
Homework 8 Math 347, Winter 2022

1. Find all solutions to the following system of linear congruences:

x ≡ 0 mod 2

x ≡ 0 mod 3

x ≡ 1 mod 5

x ≡ 6 mod 7

Approach 1.

Begin by observing that x = 6 satisfies each of the above congruences. Since 2, 3, 5, and 7 are pairwise
relatively prime, Sun-Tsu’s theorem indicates that this solution is unique modulo 2 · 3 · 5 · 7 = 210.
Hence, every solution to this system of congruences is congruent to 6 modulo 210. Moreover, if y ≡ 6
mod 210, then y satisfies all of the above congruences by problem 3 on homework 6. Therefore, every
solution to the above system of congruences lies in the set {6 + 210k : k ∈ Z}.

Approach 2.

Let m1 = 2, m2 = 3, m3 = 5, and m4 = 7. Then let a1 = 0, a2 = 0, a3 = 1, and a4 = 6. Define
M :=

∏4
i=1 mi = 210 and Mi := M

mi
. We use the proof of Sun-Tsu’s theorem to find a solution to the

above system of congruences. For each 1 6 i 6 4, we solve the congruence Miyi ≡ 1 mod mi:

105 · 1 ≡ 1 mod 2

70 · 1 ≡ 1 mod 3

42 · 3 ≡ 1 mod 5

30 · 4 ≡ 1 mod 7

Then the proof of Sun-Tsu’s theorem indicates that x =
∑4

i=1 aiMiyi = 846 is the unique solution
(modulo 210) to the system of congruences. Moreover, if y ≡ 6 mod 210, then y satisfies all of the
above congruences by problem 3 on homework 6. Therefore, every solution to the above system of
congruences lies in the set {846 + 210k : k ∈ Z}.
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2. Find all solutions of the congruence x2 + 6x− 31 ≡ 0 mod 72.

Suppose first that x ∈ Z satisfies x2 + 6x − 31 ≡ 0 mod 72. Then by problem 3 on homework 6, x
also satisfies x2 + 6x − 31 ≡ 0 mod 8 and x2 + 6x − 31 ≡ 0 mod 9. To simplify computations and
notation, define f, g : Z → Z so that f(y) is the least nonnegative residue of y2 + 6y − 31 modulo 8
and g(y) is the least nonnegative residue of y2 + 6y − 31 modulo 9. We have the following tables of
values for f and g

y 0 1 2 3 4 5 6 7 8
f(y) 1 0 1 4 1 0 1 4
g(y) 5 3 3 5 0 6 5 6 0

Since x satisfies f(x) ≡ 0 mod 8 and g(x) ≡ 0 mod 9, we see now that we must have x ≡ 1 mod 8
or x ≡ 5 mod 8. Additionally, we must have x ≡ 4 mod 9 or x ≡ 8 mod 9.

If x ≡ 1 mod 8 and x ≡ 4 mod 9, then Sun-Tsu’s theorem indicates that x must be congruent to
49 modulo 72. Moreover, a quick computation verfies that 492 + 6 · 49 − 31 ≡ 0 mod 72, so x ≡ 49
mod 72 gives a solution.

If x ≡ 1 mod 8 and x ≡ 8 mod 9, then Sun-Tsu’s theorem indicates that x must be congruent to 17
modulo 72. Again, a quick computation verifies that 172 + 6 · 17− 31 ≡ 0 mod 72, so x ≡ 17 mod 72
gives another solution.

If x ≡ 5 mod 8 and x ≡ 4 mod 9, then Sun-Tsu’s theorem indicates that x must be congruent to 13
modulo 72. Yet again, 132 + 6 · 13− 31 ≡ 0 mod 72 and so x ≡ 13 mod 72 gives a third solution.

The only remaining possibility for x is that x ≡ 5 mod 8 and x ≡ 8 mod 9. In this case, Sun-Tsu’s
theorem indicates that x must be congruent to 53 modulo 72. One final check yields 532+6 ·53−31 ≡ 0
mod 72 for a fourth and final solution, namely x ≡ 53 mod 72.
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3. Show that if a, b, c ∈ Z and (a, b) = 1, then there exists an integer n ∈ Z so that (an + b, c) = 1

Proof 1.

Case 1: Every prime factor of c divides b.

In this case, take n = 1. Let p be a prime factor of c. Then since p | b and p - a (since (a, b) = 1),
p - a + b. Hence, a + b and c share no common prime factors, i.e. (a + b, c) = 1.

Case 2: Some prime factor(s) of c do not divide b.

In this case, take

n =
∏
p|c

p prime
p-b

p

Now let q be a prime factor of c. If q | b, then q - n and q - a, so q - an implying that q - an + b. If
q - b, then q | n, so q | an and hence, q - an + b. Hence, an + b and c share no common prime factors,
i.e. (an + b, c) = 1.

Proof 2.

Since (a, b) = 1, the set of numbers {an + b : n ∈ N} forms an arithmetic progression with infinitely
many primes by Dirichlet’s Theorem. Hence, there exists a prime p = an+b with p > c, so (an+b, c) =
(p, c) = 1.
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