
Homework 4 Math 347, Winter 2022

1. Show that 8n+ 3 and 5n+ 2 are relatively prime for all integers n.

We first use the fact that (a, b) = (a+ kb, b) applied to a = 8n+ 3, b = 5n+ 2, and k = −1 to find that
(8n+ 3, 5n+ 2) = (3n+ 1, 5n+ 2).

Then, we apply the same fact, but with a = 5n+ 2, b = 3n+ 1, and k = −1 to find (3n+ 1, 5n+ 2) =
(3n+ 1, 2n+ 1).

Finally, we apply the fact again twice more to get (3n+1, 2n+1) = (n, 2n+1) = (n, 1) = 1. Therefore,
(8n+ 3, 5n+ 2) = 1, so 8n+ 3 and 5n+ 2 are relatively prime.
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2. Using Euclid’s proof that there are infinitely many primes (this is the first proof we gave in class),

show that the nth prime, pn, does not exceed 22
n−1

for n > 1. Conclude that when n is a positive
integer, there are at least n + 1 primes less than 22

n

. Conclude that for integers x of the form 22
n

,
π(x) > log2 log2 x

We prove this by strong induction on n. Note that for n = 1, pn = 2 and 22
n−1

= 2, so pn 6 22
n−1

.

Now, if pk 6 22
k−1

, we aim to show that pn+1 6 22
n

. By Euclid’s proof that there are infinitely many

primes, pn+1 6 p1 · · · pn + 1. By the induction hypotheses, p1 · · · p2 6 22
0 · 221 · · · 22n−1

, so

pn+1 6 p1 · · · pn + 1 6 22
0

· 22
1

· · · 22
n−1

+ 1 = 22
0+21+···+2n−1

+ 1 = 22
n−1 + 1 < 22

n

Hence, if n is a positive integer, then p1, . . . , pn+1 6 22
n

, so there are at least n + 1 primes less than
or equal to 22

n

. Substituting x = 22
n

, we have π(x) > n+ 1 = log2 log2 x+ 1 > log2 log2 x.
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3. Show that if n ∈ Z>1 and i, j ∈ N satisfying 1 6 i < j 6 n, then

(n! · i+ 1, n! · j + 1) = 1

Hint: You may use the fact that if p is prime and p | ab, then p | a or p | b.

We apply the fact that (a, b) = (a + bc, b) with a = n! · j + 1, b = n! · i + 1, and c = −1. Hence
(n! · i+ 1, n! · j + 1) = (n! · i+ 1, n! · (j − i)).

Now if p is a prime factor of n! · (j − i), then p | n! or p | (j − i). If p | n!, then p 6 n. If p | (j − i),
then p 6 j − i < n. In either case, p 6 n.

If p is a prime factor of n! · i + 1, then p > n (otherwise, if p 6 n, then p | n! · i and p | n! · i + 1, a
contradiction).

Hence, n! · i+ 1 and n! · (j − i) share no prime factors, so

(n! · i+ 1, n! · j + 1) = (n! · i+ 1, n! · (j − i)) = 1
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4. Show that if ak − 1 is prime (with a > 1 and k > 2), then...

(a) . . . a = 2

Suppose that a > 1 and k > 2. If a = 1, then ak − 1 = 0, which is not prime, so we may assume
that a > 2. Then

ak − 1 = (a− 1)(ak−1 + ak−2 + · · ·+ a+ 1)

If a > 2, then we see that ak − 1 is not prime because (a− 1) | (ak − 1) and 1 < a− 1 < ak − 1.
Therefore, a = 2.

(b) . . . k is prime

To show that if 2k − 1 is prime, then k is prime, we prove the contrapositive. Suppose that k is
not prime, so that there exists an integer a so that 1 < a < k and a | k. Then we observe that

2k − 1 = 2k−1 + 2k−2 + · · ·+ 2 + 1

=

k/a∑
i=0

a∑
j=1

2k−ai−j

=

k/a∑
i=0

2k−a(i−1)
a∑

j=1

2a−j

=

k/a∑
i=0

2k−a(i−1) · (2a − 1)

= (2a − 1)

k/a∑
i=0

2k−a(i−1)

so 2a − 1 is a factor of 2k − 1. Since 1 < a < k, we have that 1 < 2a − 1 < 2k − 1 and so 2k − 1 is
not prime.
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