
Math 347 Homework 7 Winter 2022

1. Find a complete set of residues modulo 7 so that...

(a) ...each residue is even

It suffices to find a set S of seven even numbers so that for each
0 ≤ i < 6, some element of S is congruent to i mod 7. For
instance, S = {0, 2, 4, 6, 8, 10, 12} has

0 ≡ 0 mod 7

8 ≡ 1 mod 7

2 ≡ 2 mod 7

10 ≡ 3 mod 7

4 ≡ 4 mod 7

12 ≡ 5 mod 7

6 ≡ 6 mod 7

(b) ...each residue is odd

We can take S = {1, 3, 5, 7, 9, 11, 13} because

7 ≡ 0 mod 7

1 ≡ 1 mod 7

9 ≡ 2 mod 7

3 ≡ 3 mod 7

11 ≡ 4 mod 7

5 ≡ 5 mod 7

13 ≡ 6 mod 7

(c) ...each residue is prime

We can take S = {2, 3, 5, 7, 11, 13, 29} because
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7 ≡ 0 mod 7

29 ≡ 1 mod 7

2 ≡ 2 mod 7

3 ≡ 3 mod 7

11 ≡ 4 mod 7

5 ≡ 5 mod 7

13 ≡ 6 mod 7
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2. Prove that if m > 4 is composite, then

(m− 1)! ≡ 0 mod m

Since m is composite, we can write m = pq where 1 < p ≤ q ≤ m− 1.
If m is not the square of a prime, we can assume p < q. In that case
(m − 1)! = (m − 1)(m − 2) · · · q · · · p · · · 2 · 1 in which case m = pq |
(m− 1)! and hence, (m− 1)! ≡ 0 mod m.

Now suppose that m = p2 for some prime p. Since m > 4, p =√
m > 2. But then 2p < p2 = m, so 2p ≤ m − 1. Now we can

conclude that (m−1)! = (m−1)(m−2) · · · (2p) · · · p · · · 2·1. Therefore,
p(2p) = 2m | (m− 1)! and in particular, m | (m− 1)!.
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3. Let p be an odd prime. Show that x2 ≡ 1 mod p has exactly two
incongruent solutions mod p.

Note that x = 1 and x = −1 are both solutions to x2 ≡ 1 mod p.
If 1 ≡ −1 mod p, then 2 ≡ 0 mod p, so p = 2. By assumption, p
is odd and hence, 1 6≡ −1 mod p. Therefore, x = 1 and x = −1 are
incongruent solutions mod p.

To show that there are no more than two solutions mod p, suppose
that a ∈ Z solves x2 ≡ 1 mod p. Then p | a2 − 1 = (a − 1)(a + 1).
Since p is prime, we can conclude that p | a− 1 or p | a + 1. But this
exactly means that a ≡ 1 mod p or a ≡ −1 mod p.
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4. Show that x2 ≡ 1 mod 2s has four distinct solutions mod 2s when
s ≥ 3.

Note that x = −1 and x = 1 are both solutions and they are distinct
mod 2s since s ≥ 3. Additionally, x = 2s−1 − 1 and x = 2s−1 + 1 are
solutions because

(2s−1 − 1)2 ≡ 22s−2 − 2 · 2s−1 + 1 ≡ 1 mod 2s

(2s−1 + 1)2 ≡ 22s−2 + 2 · 2s−1 + 1 ≡ 1 mod 2s

Moreover, since s ≥ 3, 1 < 2s−1 − 1 < 2s−1 + 1 < 2s − 1 and hence,
x = 1, 2s−1 − 1, 2s−1 + 1, and x = 2s − 1 are distinct solutions mod
2s.

We claim that these solutions are the only solutions mod 2s. Sup-
pose that a ∈ Z satisfies a2 ≡ 1 mod 2s. Then 2s | a2 − 1 =
(a − 1)(a + 1). For this to be the case, a must be odd. Then ei-
ther a − 1 ≡ 2 mod 4 or a + 1 ≡ 2 mod 4. Hence, exactly one of
a− 1 or a + 1 has at most one 2 in its prime factorization. But then
the other must be divisible by 2s−1 if (a− 1)(a + 1) is to be divisible
by 2s. So we can either write a = 1 + k · 2s−1 or a = −1 + k · 2s−1 for
some k ∈ Z. But only 1,−1 + 2s−1, 1 + 2s−1, and 2s−1 − 1 have this
property among numbers between 0 and 2s − 1. Therefore, these are
the only four solutions to x2 ≡ 1 mod 2s.
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