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Chapter 4: Congruences

Greg Knapp
February 20, 2022

Introduction to Congruences

Definition and Perspective

We're going learn about a system that seems unrelated to a lot of things we’ve talked about so far,
but actually provides us with a lot of tools to analyze things.

Remember linear Diophantine equations: ax + by = ¢

We said initially that the equation 6x + 15y = 83 doesn’t have solutions because the LHS has to be a
multiple of 3 and the RHS isn’t.

We're going to be able to apply similar reasoning to be able to show (easily) that no integer in the
sequence
11,111, 1111,11111,...

is a perfect square for instance

Def: Let m be a positive integer. If a,b € Z, we say that a is congruent to b modulo m if m | (a — b)

— In this case, we write a = b mod m

— Otherwise, we write a 2 b mod m
Ex: 22=7 mod 15, =3 =30 mod 11, 91 =0 mod 13

Important: in other classes (maybe discrete, maybe CS), you may have seen the notation mod m to
represent a function.

Le. for you, @ mod m means “the least positive integer congruent to a modulo m.”

We are not going to use that notation here because it’s not useful for what we're going to do with
modular arithmetic.

Here’s a connection to something we’ve been looking at before: a = b mod m if and only if a is of the
form b+ km

E.g. a =1 mod 4 if and only if a is of the form 1+ 4k.
This claim holds because m | (a — b) if and only if there exists k so that mk =a — b, i.e. a = b+ mk

This ties congruences into arithmetic progressions. Every member of the arithmetic progression {b +
mk : k € Z} is congruent to b modulo m
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Equivalence and Arithmetic

Importantly, congruence modulo m is what’s called an equivalence relation. This means that it satisfies
three important properties:

Thm: Let m > 0. Then for all a,b,c € Z:

1. (Reflexive property): a =a mod m
2. (Symmetric property): a =b mod m if and only if b=a mod m
3. (Transitive property): if a =b mod m and b = ¢ mod m, then a = ¢ mod m

Proofs:

— Note that m |0 =a —a so a =a mod m

— Suppose a = b mod m. Then there exists k € Z so that mk = a — b. But then m(—k) = b — q,
sob=a modm

— Suppose ¢ = b mod m and b = ¢ mod m. Then there exist k,/ € Z so that a — b = km and
b—c=4¢m. Thena—c=a—-b+b—c=km+{Im=(k+{)msoa=c modm

In addition to = acting kind of like an equals sign when it comes to the essential properties, it also
plays nicely with arithmetic

Thm: Let m > 0, and let a,b,c € Z with a =b mod m. Then

—a+c=b+c modm
—a—c=b—c modm

— ac =bc mod m
Proofs left as exercise.
The other thing that you maybe want to do is divide both sides by c.

However, this is difficult because even if both sides are divisible by ¢, you may not be able to make the
conclusion you want.

Ex: 100 =20 mod 10 and 100 and 20 are both multiples of 5.
Ile. 5-20=5-4 mod 10

But we can’t divide both sides by 5 because 20 Z 4 mod 10
What’s happening here?

We have 100 — 20 = 10k for some k

To conclude that 100/5 = 20/4 mod 10, we would need to have Lg% = 10¢ for some integer /¢, i.e.
we would need k to be a multiple of 5

But of course 100 — 20 = 10 - 8 and 8 is not a multiple of 5
When we divide by 5, we have to reduce the modulus too: 20 —4 =28, s0 20 =4 mod 2

More generally, if we have ac = bc mod m, then we can write ac — bc = mk and so we know that the
RHS is divisible by ¢

Divide both sides by ¢ to get a — b = 2k,

C

We don’t know anything about how k and c interact; maybe we need part of the ¢ to cancel out part
of the m.
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We can always cancel out the greatest common divisor of m and ¢ so that a — b = (C”;n) . M and a
little rewriting gives
c m
(a—0) = -k
(c,m) (c;m)
Since (cTn) is relatively prime to ﬁ, we know that ﬁ must divide @ — b, i.e. a =b mod (Ct’rln)

As a consequence, if you start with ac = be mod m, the best you can do is conclude that a = b

mod W

Note the following special case: if m and c are relatively prime, you can divide by ¢ mod m.

The Point

One of the main purposes of modular arithmetic is to classify the integers into easier to understand
pieces.

E.g. we know that every integer can be divided by 4 to give some remainder: e.g. n = 4q + r where
r=20,1,2,3

Note that this means that n = r mod 4: i.e. every integer is congruent to either 0,1,2 or 3 mod 4.

There are a few ways to visualize this:

.=-8=-4=0=4=8=... mod4
=-T7=-3=1=5=9=... mod4
.=—-6=-2=2=6=10=... mod4
.=-5h=-1=3=7=11=... mod4

or you could see the integers going 0,1,2,3,0,1,2,3, etc.
Of course you could also say that every integer is congruent to either 0,1,2, or 7 mod 4.
We want a phrase which describes a set of numbers with the above property.

Def: A complete set of residues modulo m is a set S of integers for which every n € Z has n = s
mod m for exactly one s € S

Ex: For any m, {0,1,...,m — 1} is a complete set of residues because any n € Z can be written
uniquely asn=gm+r for 0 <r <m, ie. r € {0,1,...,m —1} and n =7 mod m

Ex: If m is odd, then {—mT’l, —mT"g, =101, mT’g', mT’l} is a complete set of residues modulo
m

E.g. modulo 7, we have {—3,—2,—1,0,1,2,3} is a complete set of residues.

This comes from the fact that the “missing” positive integers (4,5, 6) have been replaced by themselves
minus 7 (—3,-2,—1)

Not every complete set of residues has to be consecutive, however.

Any set of m incongruent integers modulo m forms a complete set of residues modulo m.

Thm: If ri,...,r, is a complete set of residues modulo m and if a is relatively prime to m, then
ary +b,arg + b, ..., ar, + b is a complete set of residues modulo m.
Proof

— We have a set of m integers, so it suffices to show that they are incongruent

— Suppose that ar; +b = arr +b mod m
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We can subtract to get ar; = ary mod m

— Then, we can divide by a because it is relatively prime to m, so r; = r;, mod m
— This only happens if j =k, so ar; +b=ar, +b

— In other words, for j # k, ar; +b # ari, +b mod m

An Example

Ex: Find the least positive residue of
4204304+ 10!
modulo...3, 4, and 11

— everything about the 3! is 0 mod 3, so just look at the lower terms
— likewise with 4 so...

— With 11, there’s no trick. Reduce each one by 11 and add later to get 0.

This is kind of cool though because we learn that 1!+ 2! 4 --- 4 10! is a multiple of 11 without having
any clue how to factor the number.

Linear Congruences

Modular Equations

Now that we know the basics of “mod m arithmetic,” it’s good for us to learn the basics of finding
equations to solutions mod m

Any integer equation that you could write previously can now be written as a congruence
Ex: 6z 4+ 3 =7 becomes 6x +3 =7 mod 4 or mod 5 or whatever
Ex: 224+ 224+ 1 =0 becomes 22 + 2z + 1 =0 mod 2 for instance.

T 3

= ¢3 cannot be translated into a modular equation because €3

Ex: (non) e is not an integer

Note that “having an integer solution” does not mean that an equation can become a modular equation:
3
eg. ef=e

Note also that “not having an integer solution” does not mean that an equation can’t become a modular
equation, e.g. 6x +3 =7

Additionally, “not having an integer solution” does not mean that an equation can’t have solutions
mod m. E.g. 62+ 3 =7 mod 4 has the solution x = 2. 62 +3 =7 mod 5 has the solution z = 4.
6z + 3 =7 mod 6 has no solution.

That said, “having an integer solution” always implies that an equation has a solution mod m. E.g.
22 + 22 + 1 = 0 always has the solution z = —1 no matter which modulus you take.

Linear Equations
Let’s explore how to solve linear equations.

If we have something like az + b = ¢ mod m, then we can always write ax = ¢ — b mod m first, so
there’s no point in considering the +b

We might as well just consider equations of the form axz = b mod m
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To solve this equation in Q, we would want to divide by a, but we know that we can’t really do that
here, so let’s do a little further exploration.

Consider 6z =9 mod 15.
We could do this by inspection: 6-4=9 mod 15,6-9=9 mod 15,6-14 =9 mod 15
Of course, this also means that 6- (4 + 15k) =9 mod 15, 6- (9 + 15k) =9 mod 15, ete.

In fact, we’ve found all the solutions: we only have to check the numbers 0 through 14 and then we
know all the solutions

Of course, note that we could write the solutions more simply as 4 + 5k. Hmm...

6z =9 mod 15 is equivalent to saying that there exists y with 6x — 9 = 15y, i.e. 6z — 15y =9

But we know how to do this because (6,15) =39

Find a particular solution, say = 4 and y = 1 and then the general solution looks like x = 4 + %k
andy=1— ﬁk

We don’t really care about y, but note that we get the same solution description.

Lesson: linear congruences are equivalent to two-variable linear diophantine equations.

Thm: Let a,b,m € Z, m > 0. If (a,m) t b, then az = b mod m has no solutions. If (a,m) | b, then
ax = b mod m has (a,m) incongruent solutions.

— Proof: Exactly what we just did, but with letters instead of numbers

— ax =b mod m if and only if there exists y € Z so that ax + my = b

— This only occurs if (a,m) | b

— If it does occur, then there exists a solution azg = b mod m and every other solution looks like

T=T0F Gy

— For 0 < k < (a,m), these solutions are incongruent mod m:

— Suppose zg + ﬁk =u1x0+ %‘j mod m

— Then %5k = %) mod m which gives k = j mod (a,m)

— But 0 < k,j < (a,m),s0k=j

— Therefore, there are (a,m) non congruent solutions

Special Case: Inverses
By the theorem, (a,m) =1 if and only if there is a solution to az =1 mod m.
This is saying that there exists a multiplicative inverse to a modulo m.
E.g. 7-5=1 mod 34, so 5 is an inverse of 7 and vice versa mod 34.
Note that we can use this fact to easily solve 7x = 12 mod 34
Multiply both sides by 5 to give x = 60 = 26 mod 34
That’s the only solution since (7,34) =1
More generally, there’s a unique solution to ax = b mod m when (a,m) =1
Additionally, consider the case when p is prime
Then (a,p) =1 for all 0 < a < p and so a is always invertible mod p.

Hence, you can solve every linear equation mod p.



Sun-Tsu’s Theorem

Intro

In the previous section, we discussed solving a single equation modulo m
Maybe the next step is to solve a system of equations mod m

Systems of linear equations can be manageable

The next thing that we’ll consider is a single equation with multiple moduli.
It’s kind of hard to motivate this actually.

This is really useful though.

Are there any integers x satisfying t =1 mod 5 and x =3 mod 77?7
Neither 1 nor 3 fits the bill, so we have to dig a little deeper.

Let’s add multiples of 7 to 3 to see what we find.

Letting a,, = 3 4 Tn, we have ap = 3 (3 mod 5), a; = 10 (0 mod 5), az = 17 (2 mod 5), ag = 24 (4
mod 5), a5 = 31 (finally 1 mod 5)

Hence, x = 31 works

Notice that we cycled through all of the congruence classes mod 5 when we took a number and added
multiples of 7 to it.

This is because 7 is invertible mod 5: if 34+ 7n = 3 4+ 7m mod 5, then we’d have n = m mod 5, so
3,3+ 7,3+ 14,3+ 21,3 + 28 must be distinct mod 5

Are there any other solutions? (warm-up exercise)

Yes: anything of the form 31 + 35k is a solution!

The Theorem

We're going to call this theorem Sun-Tsu’s Theorem since Sun-Tsu gave the earliest known statement
of the theorem

It’s commonly called the Chinese Remainder Theorem

Why is that a problematic name?

(Because there are no other theorems named after entire groups of people)
Ch’in Chiu-Shao published the first known proof of this fact

Thm: Let mq,...,m, be pairwise relatively prime positive integers. Then the system of congruences

T =a; mod m;

T =ay mod mso

T =a, mod m,

has a unique solution modulo M = my...m,

Proof



— Define L, = ka =MmiMmeg - Mp_1Mpy1 - My

— Note that (Lg, mi) = 1 since the m; are pairwise relatively prime
— Hence for each 1 < i < r, there exists yx € Z so that My, =1 mod my
— Hence, ayMyyr = ar, mod my,

— Now define x = ay M1y + asMoys + - - - + a, My,

— Observe that x = a; mod m; etc.

— Hence, we’ve solved the system of congruences

— Now we want to show that our solution is unique mod M

— Suppose that y also has y = ar, mod my forall 1 < k< r

— Then y =z mod my, implying my, | y — « for all k

— But then m; ---m, | y — x since the my, are relatively prime

— Therefore, y = mod M

3.3 Examples

— Ex: Solvex =1 mod 2, z=2 mod3,z=3 mod?5

M =30,L; =15, Ly =10, L3 =6

Want to solve 15y; =1 mod 2, 10y =1 mod 3, and 6y3 =1 mod 5

This givesy; =1, yo =1, and y3 =1

We can then take x = 15-14+10-2+ 6 -3 = 53. Could also have taken 23 or anything else
=23 mod 30.

— Ex: Find all solutions to

EE

r=a3 mod 3
Tz =as mod b
T =a;; mod 11

r =ay3 mod 13

Note M = 2145 and we have L3 = 715, L5 = 429, L1; = 195, and L3 = 165
Solving 715y3 =1 mod 3 gives y3 =1
Solving 429y5 =1 mod 5 gives y5 = 4

EE

Solving 195y11 =1 mod 11 gives y11 =7
* Solving 165y13 =1 mod 13 gives y13 = 3
* Then the solution looks like 715a3 + 4 - 429a5 + 7 - 195a11 + 3 - 165a13 mod 2145

e Ex: Solve

2r =1 mod b5
3r=9 mod6
4r=1 mod?7

50=9 mod 11
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