
Math 347 Week 8 Group Work Winter 2022

1. Find an inverse modulo 17 to each of the following integers:

(a) 4 (b) 5 (c) 7 (d) 16

(a) We can do this using trial-and-error or the Euclidean algorithm. We begin by noting that we
want to find x, y ∈ Z so that 4x− 1 = 17y, i.e. 4x− 17y = 1. Trial-and-error for y yields

y 0 1 2 3
1 + 17y 1 18 35 52

and since we see that 52 = 4 · 13, we have 4 · 13− 17 · 3 = 1, so 4 · 13 ≡ 1 mod 17. Hence, 13 is
an inverse to 4 mod 17.

(b) We can use the same trial-and-error table as above to note that 5 · 7 = 1 + 2 · 17, so 5 · 7 ≡ 1
mod 17 and hence, 7 is an inverse to 5 mod 17.

(c) Since 7 is an inverse to 5 mod 17, it must be the case that 7 is an inverse to 5 mod 17.

(d) Note that 16 ≡ −1 mod 17. −1 is its own inverse mod 17 since (−1) · (−1) ≡ 1 mod 17. Hence,
16 · 16 ≡ 1 mod 17 and so 16 is its own inverse mod 17.
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2. Which integers leave a remainder of 1 when divided by both 2 and 3?

x has a remainder of 1 when divided by 2 and 3 if and only if x ≡ 1 mod 2 and x ≡ 1 mod 3. We see
that x = 1 is such a number. Moreover, Sun-Tsu’s theorem tells us that this is the only solution mod
6. Hence, every integer which leaves a remainder of 1 when divided by both 2 and 3 is of the form
1 + 6k for some k ∈ Z.
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3. Solve the following systems of congruences:

(a) x ≡ 2 mod 11
x ≡ 3 mod 12
x ≡ 4 mod 13

(b) 3x ≡ 1 mod 7
2x ≡ 4 mod 9
5x ≡ 0 mod 10

(a) Here’s a quick trick for this one (told to me by Izzy Harker). 2 ≡ −9 mod 11, 3 ≡ −9 mod 12,
and 4 ≡ −9 mod 13, so we can replace our system of congruences by

x ≡ −9 mod 11

x ≡ −9 mod 12

x ≡ −9 mod 13

We see that x = −9 is such and number and since 11, 12, and 13 are pairwise relatively prime,
Sun-Tsu’s Theorem implies that the solutions all have the form x ≡ −9 mod 11 · 12 · 13.

If you wish to do this using the proof of Sun-Tsu’s theorem, we can set M = 11 · 12 · 13, L1 =
12 · 13 = 156, L2 = 11 · 13 = 143, and L3 = 11 · 12 = 132. We wish to solve the congruences

156y1 ≡ 1 mod 11

143y2 ≡ 1 mod 12

132y3 ≡ 1 mod 13

Reducing the coefficients yields the more manageable

2y1 ≡ 1 mod 11

11y2 ≡ 1 mod 12

2y3 ≡ 1 mod 13

and we can quickly see that we can take y1 = 6, y2 = 11, and y3 = 7. The proof of Sun-Tsu’s
Theorem now tells us that every solution to our original system of congruences is congruent to

a1L1y1 + a2L2y2 + a3L3y3 = 2 · 156 · 6 + 3 · 143 · 11 + 4 · 132 · 7 = 10287

modulo 11 · 12 · 13. A quick computation confirms that −9 ≡ 10287 mod 11 · 12 · 13

(b) We first convert our system of linear congruences into something Sun-Tsu’s Theorem is better able
to handle. Note that 3 · 5 ≡ 1 mod 7, so 3x ≡ 1 mod 7 if and only if x ≡ 5 mod 7. Likewise,
2 · 5 ≡ 1 mod 9, so 2x ≡ 4 mod 9 if and only if x ≡ 20 ≡ 2 mod 9. The last congruence is a
bit trickier to handle. Note, however, that since (5, 10) = 5, we can “divide” both sides of the
congruence by 5 to find that 5x ≡ 0 mod 10 if and only if x ≡ 0 mod 2. Our system of linear
congruences then becomes

x ≡ 5 mod 7

x ≡ 2 mod 9

x ≡ 0 mod 2
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Using the notation from Sun-Tsu’s theorem, we have m1 = 7, m2 = 9, m3 = 2, L1 = 9 · 2 = 18,
L2 = 7 · 2 = 14, L3 = 7 · 9 = 63. We want to find y1, y2, y3 ∈ Z satisfying

18y1 ≡ 1 mod 7

14y2 ≡ 1 mod 9

63y3 ≡ 1 mod 2

and reducing the coefficients yields

4y1 ≡ 1 mod 7

5y2 ≡ 1 mod 9

y3 ≡ 1 mod 2

Hence, we can take y1 = 2, y2 = 2, y3 = 1. We finally find that every solution to our original set
of congruences is equivalent to

5 · 18 · 2 + 2 · 14 · 2 + 0 · 63 · 1 = 236

modulo 2 · 7 · 9 = 126.
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4. Show that the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

has a solution if and only if (m1,m2) | (a1 − a2). Show that when there is a solution, it is unique
modulo lcm(m1,m2)

Suppose first that there exists x ∈ Z satisfying x ≡ a1 mod m1 and x ≡ a2 mod m2. Then there
exist y1, y2 ∈ Z so that x − a1 = m1y1 and x − a2 = m2y2. Subtracting these equations yields
a1 − a2 = m1y1 −m2y2. Since (m1,m2) | (m1y1 −m2y2), we have (m1,m2) | a1 − a2.

Conversely, suppose that (m1,m2) | a1−a2. Then there exist integers y1, y2 ∈ Z so that m1y1+m2y2 =
a1 − a2. Then a1 + m1y1 = a2 + m2y2. Set x = a1 + m1y1 = a2 + m2y2. Since x = a1 + m1y1, x ≡ a1
mod m1. Also, since x = a2 + m2y2, x ≡ a2 mod m2. Therefore, the system of congruences has a
solution.

For the final part of the solution, suppose that x, y ∈ Z are both congruent to a1 mod m1 and
congruent to a2 mod m2. Then x ≡ y mod m1 and x ≡ y mod m2, i.e. m1 | x − y and m2 | x − y.
Since m1

(m1,m2)
| m1, we conclude that m1

(m1,m2)
| x − y. However, m1

(m1,m2)
and m2 are relatively prime

and they both divide x − y. Therefore, their product m1m2

(m1,m2)
= lcm(m1,m2) also divides x − y, i.e.

x ≡ y mod lcm(m1,m2). Therefore, the solutions to this system of congruences are unique modulo
lcm(m1,m2).
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5. Use the previous problem to solve the system of congruences

x ≡ 4 mod 6

x ≡ 13 mod 15
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6. Show that there are arbitrarily long strings of consecutive integers each divisible by a perfect square
greater than 1.
Hint: Use Sun-Tsu’s Theorem on an appropriate system of congruences.

We show that for every k ∈ N, there is a string of k consecutive integers each of which is divisible by
a perfect square greater than 1. Let pn denote the nth prime (starting with p1 = 2) and consider the
system of linear congruences

x ≡ −1 mod 4

x ≡ −2 mod 9

x ≡ −3 mod 25

...

x ≡ −k mod p2k

Since the moduli are pairwise relatively prime, Sun-Tsu’s Theorem guarantees that there is a solution
to this system of congruences. This implies, however, that x+ 1 is divisible by 22, x+ 2 is divisible by
32, x+3 is divisible by 52, etc. until x+k is divisible by p2k. But now we have that x+1, x+2, . . . , x+k
is a list of k consecutive integers, each of which is divisible by a square greater than 1.
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