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1 Wilson’s Theorem and Fermat’s Little Theorem

1.1 Intro

• Our goal is to get to quadratic reciprocity as soon as we can.

• Quadratic reciprocity essentially describes how to take square roots in modular arithmetic

• To get there, we need a couple of special congruences that we’re going to try to prove

1.2 Wilson’s Theorem

• In one of our infinitely many primes proofs earlier, we were looking at numbers of the form n! + 1

• We said they have to have a prime factor > n and we used that to say something like “since there’s a
prime > n for each n, there must be infinitely many primes”

• We didn’t talk about what prime factors those numbers have though.

• Let’s look at some selected examples

• 1! + 1 = 2 is div by 2

• 2! + 1 = 3 is div by 3

• 4! + 1 = 25 is div by 5

• 6! + 1 = 721 is div by 7

• Note that 3! + 1 = 7 is not div by 4 and 5! + 1 = 121 is not div by 6

• So it seems like when p is prime, (p− 1)! + 1 is div by p

• Thm: (Wilson): If p is prime, then (p− 1)! ≡ −1 mod p

• Proof:

– p = 2 is trivial, so assume p odd

– (p− 1)! = (p− 1)(p− 2) · · · 2 · 1
– Note that p− 1 ≡ −1 is its own inverse mod p

– Hence, if x < p− 1, then the inverse of x is also < p− 1

– Inverses come in distinct pairs: you saw this on the homework. If x is its own inverse, then x2 ≡ 1
mod p implying that x ≡ ±1 mod p

– So the numbers (p−2), . . . , 2 (of which there are p−3, i.e. evenly many) can be paired with their
inverses and you get a bunch of canceling

– Hence, (p− 1)! ≡ p− 1 ≡ −1 mod p
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• Fact: the converse is also true, though we won’t prove it

• If n > 2 has (n− 1)! ≡ −1 mod n, then n is prime.

• This can be used as a primality test, though an inefficient one since n! takes a while to compute

1.3 Fermat’s Little Theorem

• Something else you noticed on a previous homework: if a ∈ Z, then 3 | a3 − a

• Also 5 | a5 − a

• Easy enough to check that 2 | a2 − a

• Note that 4 - a4 − a if a = 2, so it is not always the case that an − a is divisible by n

• But it sure looks like if p is prime, then p | ap − a

• Thm: (Fermat?) If p is prime and a is an integer with p - a, then ap−1 ≡ 1 mod p

• Corollary: If a ∈ Z, then ap − a is div by p (check both cases)

• Proof:

– Consider the numbers of the form a, 2a, 3a, . . . , (p− 1)a

– Note that none are divisible by p

– Note that they are pairwise incongruent mod p

– Hence, {0, a, 2a, . . . , (p− 1)a} forms a complete set of residues mod p

– Now we have

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) mod p

ap−1(p− 1)! ≡ (p− 1)! mod p

ap−1 ≡ 1 mod p

Applications and Examples

• If p is prime and a ∈ Z, p - a, then ap−2 is an inverse of a mod p

• Ex: What is the remainder when 40! is divided by 41 · 43 = 1763?

– Here, we’re going to use Sun-Tsu’s Theorem in kind of a clever way

– First, we note that 40! ≡ −1 mod 41 by Wilson’s Theorem

– Next, 42! ≡ −1 mod 43 also by Wilson’s Theorem

– To get to 40!, we want to multiply by 42−1 and 41−1

– 42−1 is itself (−1) and since 41 ≡ −2 mod 43, we see that −22 is an inverse to 41 mod 43.

– Hence, 40! ≡ 42! · 42−1 · 41−1 ≡ (−1) · (−1) · (−22) ≡ −22 mod 43.

– Now we want to find an integer that is equivalent to −1 mod 41 and −22 mod 43

– Apply Sun-Tsu’s theorem to get x ≡ 1311 mod 1763

• Ex: Show that 30 | n9 − n for all positive integers n

– 30 = 2 · 3 · 5, so we want to look at n9 − n mod 2, 3, and 5 separately

– mod 2, we note that 09 − 0 ≡ 0 mod 2 and 19 − 1 ≡ 0 mod 2, so n9 − n is always divisible by 2

– mod 3, we note that n9 − n = (n3)3 − n ≡ n3 − n ≡ 0 mod 3
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– mod 5, we note that n9 − n = n5 · n4 − n ≡ n · n4 − n ≡ n5 − n ≡ 0 mod 5

– Hence, n9 − n ≡ 0 mod 2, 3, and 5 so by Sun-Tsu’s Theorem, it is also congruent to 0 mod 30.

• Ex: Compute the least positive residue of 3201 mod 11

– Since 310 ≡ 1 mod 11, we have 3201 = 3200 · 3 ≡ (310)20 · 3 ≡ 3 mod 11

• Ex: Compute the least positive residue of 54328 mod 101

– We know that 5100 ≡ 1 mod 101, so 54328 ≡ 528 mod 101

– Still hard to compute, but watch this:

52 ≡ 25 mod 101

54 ≡ 252 ≡ 625 ≡ 19 mod 101

58 ≡ 192 ≡ 361 ≡ 58 mod 101

516 ≡ 582 ≡ 3364 ≡ 31 mod 101

528 ≡ 516 · 58 · 54 ≡ 31 · 58 · 19 ≡ 24 mod 101
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