
Math 347 Homework 5 Winter 2022

1. Prove that no integer in the sequence

11, 111, 1111, 11111, . . .

is a perfect square.

Set an =
∑n

k=0 10k and observe that we are trying to show that an is not a perfect square when n > 1.
Suppose, by contradiction, that there exists r ∈ Z so that an = r2.

If r is even (say r = 2s for some s ∈ Z), then r2 = 4s2 is a multiple of 4. an = 1 + 2
∑n

k=1 5k · 2k−1, so
an is odd. Hence, an cannot be equal to r2 when r is even.

Then r must be odd. Problem 3 on the week 2 group work indicates then that r2 must have the form
4j + 1 for some integer j. Note that when n > 2, an = 3 + 4

(
2 +

∑n
k=2 5k · 2k−2

)
, so an has the

form 3 + 4` for some ` ∈ Z. We cannot have 3 + 4` = 1 + 4j when `, j ∈ Z (because if we did, then
2 = 4(j − `), which is impossible since 4 - 2), so we cannot have r2 = an.

Hence, we have shown that we cannot have r ∈ Z with r2 = an when n > 2.
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2. A square-free integer is an integer that is not divisible by any perfect squares other than 1. Prove that
every integer can be written as the product of a square and a square-free integer.

Observe first that since 0 is a perfect square and 1 is square-free, 0 = 0 · 1 is the product of a perfect
square and a square-free integer. Likewise, since 1 is both a perfect square and a square-free integer,
1 = 1 · 1 is the product of a perfect square and a square-free integer. Finally, −1 is square-free and
hence, (−1) = 1 · (−1) can be written as the product of a square and a square-free integer.

Now fix n > 1. By the fundamental theorem of arithmetic, there exist distinct primes p1, . . . , pk and
integers e1, . . . , ek > 1 with pe11 · · · p

ek
k = n. For 1 6 i 6 k, define bi to be 0 if ei is even and define bi

to be 1 if ei is odd. Then for each i, ei − bi is even. Hence, we can rewrite

n = (pb11 · · · p
bk
k ) ·

(
p

e1−b1
2

1 · · · p
ek−bk

2

k

)2

(
p

e1−b1
2

1 · · · p
ek−bk

2

k

)2

is a perfect square, so it only remains to show that pb11 · · · p
bk
k is square-free. If

` ∈ Z and `2 | (pb11 · · · p
bk
k ), then any prime p | ` must have p = pj for some 1 6 j 6 k, giving

p2j | p
b1
1 · · · p

bk
k . But this is impossible since each bi 6 1 and the primes p1, . . . , pk are distinct and

hence, ` cannot have any prime factors. So ` = ±1 implying that `2 = 1. Hence, 1 is the only square
dividing pb11 · · · p

bk
k and so pb11 · · · p

bk
k is square-free.

This concludes the proof that any nonnegative integer can be written as the product of a perfect square
and a square-free integer. Now suppose that n < −1 and note that |n| is strictly larger than 1 and
hence, can be written as a product of a perfect square and a square-free integer. Write |n| = sf where
s is a perfect square and f is square-free. Then n = s(−f). s is still a perfect square and −f is
square-free because f is square-free (after all, any square which divides −f will also divide f).

We conclude that for every integer n, n can be written as the product of a perfect square and a
square-free integer.

2



Math 347 Homework 5 Winter 2022

3. Show that 3
√

5 is irrational.

Suppose, by contradiction, that 3
√

5 is rational. Then there exist integers a, b ∈ Z with b 6= 0 and
3
√

5 = a
b . Cubing both sides of the equation gives 5 = a3

b3 and hence, 5b3 = a3. By the fundamental
theorem of arithmetic, a factors uniquely into primes, implying that the factorization of a3 has every
prime raised to a power which is a multiple of 3. In particular, the power of 5 which divides a3 must
be a multiple of 3. By symmetry, the power of 5 which divides b3 is also a multiple of 3 and hence, the
power of 5 which divides 5b3 cannot be a multiple of 3. This contradicts the finding that 5b3 = a3, so
it must be the case that 3

√
5 is irrational.
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