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1 Introduction

• Fermat’s last theorem

• Catalan’s Conjecture: If m,n ∈ Z>2, then the only nonzero solution in Z to xm− yn = 1 is 32−23 = 1

– Cassels showed (using methods you’ll be able to understand after one or two terms of this class)
that if p and q are prime and x, y ∈ Z satisfy xp − yq = 1, then x is a multiple of q and y is a
multiple of p

– Later, Tijdeman and Langevin (using methods you’ll need a lot more study to understand) showed
that |x|, |y|, p, q < exp exp exp exp exp(730)

– The proof was finished by Mihailescu using methods you’ll only need a little bit more study to
understand after this course.

2 Section 1.1—Numbers and Sequences

2.1 Number Systems

• First order of business: figure out what numbers we want to study

• Before we can do that, we should probably figure out what types of numbers there are

• At the heart of everything is the number 0. This is the easiest number.

• There are more numbers than 0 of course, but the question is, how can we construct them?

• Let’s create a function called “successor”

• This function takes in a number and adds 1, i.e. the successor of 0 is 1, the successor of 1 is 2, and so
on.

• Now we’ve created the set of natural numbers: N = {0, 1, 2, . . . }

• N comes with the nice operation of addition: if you add any two numbers in N, you get another number
in N.

• N also has multiplication in it: if you multiply two numbers in N, you get another number in N.

• What do I mean by operation? Something you can do to numbers to remain in the given set.

• But N doesn’t come with some of the other operations we like: subtraction and division to name two

• To get the negative integers, we could create a “predecessor” function

• Or we could say “let’s make every number have an additive inverse” (i.e. if n is a number, let’s make
there be another number x which makes n+ x = 0)
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• Either way, we get the full range of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }

• We still have addition, multiplication, subtraction, but not division

• To give ourselves the division operation, we now have to allow ourselves fractions:

• We now define Q = {pq | p, q ∈ Z and q 6= 0}

• Now we have all the operations that we like!

• Question: have we gotten all the numbers?

• Answer: No. I claim that
√

2 /∈ Q

• Proof: (there are lots, including some that are better than this one)

– Suppose (by contradiction) that
√

2 is irrational

– Then there exist positive integers a and b so that
√

2 = a/b

– Define the set S := {k
√

2 | k, k
√

2 ∈ Z>0}
– Note that S is nonempty: b

√
2 = a ∈ Z and b ∈ Z, so b

√
2 ∈ S

– S is subset of N: therefore, it has a least element (this is called the well-ordering property of
N—that every nonempty subset of N has a least element)

– Call this least element s = t
√

2 for t ∈ Z>0

– We claim that there is a smaller element of S than s (and hence, will have a contradiction)

– Note that (s− t)
√

2 = s
√

2− t
√

2 = s
√

2− s = 2t− s is an integer

– Furthermore, this number is positive because
√

2 > 1 (and so s
√

2 > s). Therefore, s − t is
positive.

– This implies that s− t ∈ Z>0 and (s− t)
√

2 ∈ Z>0.

– Therefore, (s− t)
√

2 ∈ S.

– But (s− t)
√

2 = s
√

2− s = s(
√

2− 1) < s because
√

2− 1 < 1

– Hence, we have found a smaller element of S

– This is a contradiction, so we find that
√

2 is irrational

• Okay, so now we know that the set of real numbers R (which we’re not going to carefully define) is
larger than Q.

• There are other irrational numbers too, like π and e.

• Note that
√

2 is the root of a polynomial with integer coefficients: x2 − 2

• Because of this we say that
√

2 is algebraic

• Def: A number α is algebraic if there exists a polynomial f(x) with integer coefficients for which
f(α) = 0

• Def: We denote the set of algebraic numbers by Q̄

• Observe, Q̄ has more numbers than R: i is a root of x2 + 1

• Question: but does Q̄ contain R? (i.e. do we have all of the numbers?)

• Answer: No, but this isn’t obvious!
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2.2 Sequences

• Def: A sequence is a list of numbers a0, a1, a2, a3, . . .

• It’s often good practice to be able to take the first few terms of the sequence and write down the
formula or come up with the pattern

• Ex: Guess a formula for an if the first few terms of the sequence are 3, 11, 19, 27, 35, 43, . . .

• Def: This forms a special type of sequence called an arithmetic progression: i.e. a sequence of the
form a, a+ d, a+ 2d, a+ 3d, . . ..

• An important feature of an arithmetic progression is that consecutive terms differ by a constant amount:
d

• Another important type of sequence is the...

• Def: A geometric progression is a sequence of the form a, ar, ar2, ar3, . . .

• An important feature of a geometric progression is that consecutive terms have a constant ratio: r

• Ex: 1, 2, 4, 8, . . . forms a geometric progression

• With these important types of sequences out of the way, we want to focus on why we introduced them:
set sizes

2.3 Set Sizes

• Def: A set S is countable if it is finite OR there exists a function f : N→ S which is one-to-one and
onto (i.e. f is a bijection). A set is uncountable if no such function exists.

– RECALL: f : X → Y is one-to-one (or injective) if for every x1, x2 ∈ X: if f(x1) = f(x2), then
x1 = x2 (i.e. every output has a unique input)

– RECALL f : X → Y is onto (or surjective) if for every y ∈ Y , there exists x ∈ X with f(x) = y
(i.e. every member of y is an output of f)

• Observe that an infinite set is countable if and only if it can be written as a sequence

– If S is countably infinite, then there exists a bijection f : N→ S.

– Define a0 = f(0), a1 = f(1),...,an = f(n),...

– Note that because f is surjective, every element of S is in this sequence.

– If S can be written as a sequence, write its elements as a0, a1, a2, . . .

– Then define f : N→ S by f(n) = an.

– f is surjective because every element of S is some an and it is injective because if f(n) = f(m),
then an = am, which implies that n = m.

• Now, to analyze set sizes, we’ll try to write them as sequences.

• Claim: the integers are countable

• Claim: the rationals are countable

0/1 1/1 -1/1 2/1 -2/1 3/1 -3/1
0/2 1/2 -1/2 2/2 -2/2 3/2 -3/2
0/3 1/3 -1/3 2/3 -2/3 3/3 -3/3

• Claim: the reals are uncountable

• Fact: the algebraic numbers are countable
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2.4 Back to Number Systems

• We have the following picture N ⊆ Z ⊆ Q ⊆ R and Q ⊆ Q̄ ⊆ C

• Number theorists tend to want to answer questions about N

• However, the operations and tools are better in some of the nearby number systems like Z and Q

• It’s not obvious, but there are also nice features of Q̄,R, and C, too (for the purposes of number theory)

• We won’t see many of those uses in this course.

3 Section 1.3—Mathematical Induction

3.1 The Principle of Induction

• We’re familiar with the basic idea of how to prove statements about “all natural numbers” by induction

• Let’s start with a more formal statement, however:

• The Principle of Mathematical Induction: Suppose that S ⊆ N and that 0 ∈ S. Additionally, suppose
that if k ∈ S, then k + 1 ∈ S. Then S = N.

• Note two things about this

1. This doesn’t look like the “proof by induction method with which we’re familiar”

2. This is stated like a theorem

• To address the first point, how does this principle yield the familiar proof method?

• Do this part in two columns:

– Say you want to show that ϕ(n) is true for all n (here, I’m using ϕ to refer to a property, not a
function—maybe ϕ(n) is the statement “n is either even or odd”)

– Typically with induction you will first show that ϕ(0) is true, then show that ϕ(n) → ϕ(n + 1)
for all n. Last, you will conclude that ϕ(n) is true for all n

– To rephrase this process in terms of the principle, suppose you start with your property ϕ

– Let S := {n ∈ N : ϕ(n) is true}
– Showing that ϕ(0) is true is equivalent to showing that 0 ∈ S
– Showing that ϕ(n)→ ϕ(n+ 1) is equivalent to showing that n ∈ S implies n+ 1 ∈ S
– Concluding that ϕ(n) is true for all n is equivalent to showing that S = N

• To address the second point, the Principle of Mathematical Induction is actually an axiom.

3.2 Relation to Well-Ordering and Strong Induction

• But it’s interesting to note that it is equivalent to the Well-Ordering Principle: the claim that every
non-empty set of natural numbers has a least element.

• Proof that well-ordering implies induction

– Suppose that the well-ordering principle holds: we aim to show induction.

– Suppose that S ⊆ N has 0 ∈ S and if k ∈ S, then k + 1 ∈ S
– By contradiction, assume that S 6= N
– Then X = N \ S is nonempty and hence, has a least element, say x.

– Since 0 ∈ S, x 6= 0

4



– Since x is the least member of X, it follows that x − 1 /∈ X (and x − 1 ∈ N since x 6= 0), so
x− 1 ∈ S.

– But since x− 1 ∈ S, it follows that x = (x− 1) + 1 ∈ S.

– Contradiction. Therefore, S = N

• The other direction is a little more tricky and is easiest if we pass through an intermediary

• The Principle of Strong Induction: Suppose S ⊆ N with 0 ∈ S. Suppose also that 0, 1, 2, . . . , k ∈ S
implies that k + 1 ∈ S. Then S = N.

• Note first that induction implies strong induction (i.e. anything you can prove by induction, you could
also prove with strong induction)

• Here’s something weird that we see:

• Proof that strong induction implies well-ordering

– We do this by contrapositive

– Suppose that X ⊆ N has no least element and X 6= ∅
– Take S = N \X and note that 0 ∈ S because if 0 were in X, then X would have a least element

– Suppose now that 0, 1, . . . , k ∈ S.

– Then k + 1 /∈ X because that would make X have a least element

– Hence, k + 1 ∈ S
– So S satisfies our strong induction properties.

– But note that S 6= N because X (by hypothesis) is nonempty

– So strong induction fails

• The interesting conclusion here is that strong induction implies regular induction (i.e. anything you
can prove with strong induction, you can also prove with weak induction)

• This seems odd because strong induction lets you assume so much more: you don’t just get to assume
that n ∈ S when showing that n+ 1 ∈ S, you also get to assume that 0, 1, 2, . . . etc. are all in S

• Note that these arguments don’t really tell you how to convert a strong induction argument to an
induction argument—they just say that it can be done.

3.3 Examples

• Show that for all n > 1, n2 =
∑n

j=1(2j − 1)

• Review sigma notation

• Proof:

– True for 1

– Now suppose that n2 =
∑n

j=1(2j − 1)

– Then (n+ 1)2 = n2 + 2n+ 1 =
(∑n

j=1(2j − 1)
)

+ 2n+ 1 = (1 + 3 + 5 + · · ·+ 2n− 1) + 2n+ 1 =∑n+1
j=1 2j − 1

• Show that for all n > 4, 2n < n!

– n = 4 check

– Suppose that n > 4 and 2n < n!

– Our goal is to show that 2n+1 < (n+ 1)!
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– If we think about how we get from 2n to 2n+1, we multiply by 2

– If we think about how we get from n! to (n+ 1)!, we multiply by n+ 1

– To formalize this, we use the inequalities: 2n+1 = 2n · 2 < n! · 2 < n! · (n+ 1) < (n+ 1)!

• Show that
∑n

k=0
1
2k

= 2− 1
2n .

– n = 0 check

– Suppose true for n

– We want to show:
∑n+1

k=0
1
2k

= 2− 1
2n+1

– Note that
∑n+1

k=0
1
2k

= 1
2n+1 +

∑n
k=0

1
2k

= 1
2n+1 + 2− 1

2n = 2− 1
2n+1

– Done

• Conjecture a formula for An where A = ( 1 1
0 1 ) and prove your formula by induction.

4 Section 1.5—Divisibility

4.1 The Basics

• Proof by induction relies heavily on the additive properties of the integers

• You might wonder: is there a similar axiom/theorem that relies on multiplicative properties?

• This is a bit trickier since the natural numbers are additively generated by 1.

• What are the natural numbers multiplicatively generated by?

• Def: If a, b ∈ Z, we say that a divides b if there exists c ∈ Z so that ac = b. In this case, we also say
that b is a multiple of a and that a is a divisor or factor of b. We write a | b if a divides b and a - b
otherwise.

• Some notes: a and b are allowed to be positive or negative.

• E.g. the divisors of 27 are ±1,±3,±9,±27. Hence, −3 | 27, but 5 - 27

• Some essential facts:

– 1 | n for every n

– 0 - n for every n

– n | 1 if and only if n = ±1

– n | 0 for every n 6= 0

– a | b if and only if a 6= 0 and b
a is an integer

4.2 Some Results

• Thm: If a, b, c ∈ Z, a | b, and b | c, then a | c.

– How do we prove this?

– Start with the conclusion: determine that I want to find a k ∈ Z so that ak = c

– Translate what the hypotheses mean: there exists m,n ∈ Z so that am = b and bn = c

– Note that I have a c in what I want and a c in my hypotheses: c = bn and try to manipulate the
other side to get what we want

– c = bn = (am)n = a(mn)

– We’ve now shown that c is a multiple of a and we conclude that a | c
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• Thm: If a, b, c,m, n ∈ Z and if c | a and c | b, then c | (ma+ nb)

– To think about this theorem, we want to understand what it is saying first

– If you don’t understand it, you can’t prove it

– “If a is a multiple of c and b is a multiple of c, then any (integer) linear combination of a and b
is also a multiple of c”

– For example: taking a = 10, b = 15, and c = 5, this theorem says that 10m + 15n will be a
multiple of 5. And of course it will: 10m means “move right by 10 units m times” and 15n means
“move right by 15 units n times” and those movements will always land you on a multiple of 5

– To formally prove this, however, we have to show that there exists k ∈ Z so that ck = ma+ nb

– We know for sure that there exists r, s ∈ Z so that cr = a and cs = b.

– Note then that ma+ nb = m(cr) + n(cs) = c(mr + ns)

– Hence, k = mr + ns works and we have that c | ma+ nb

4.3 Integral Division

• We said earlier that b | a iff b 6= 0 and a
b ∈ Z

• But what can we say when b - a? Or when we don’t know if b | a?

• You’re probably familiar with long division, but let me remind you of the algorithm:

• E.g. Divide 127 by 3

• We want to generalize this to “Divide a by b,” though there are two questions:

1. What do we get?

2. How do we know we’re going to get it?

• Rather than worry too much about how to formalize the algorithm and prove its results (do that in a
CS class), we’re going to use this algorithm as inspiration for a theorem

• We first need to figure out what we get

• Note that the previous result gave us 127
3 = 42 + 1

3

• It’s important that the numerator of the fraction is

1. Positive (if it were, say 42 + −1
3 , then we would rather write 41

+
2
3 )

2. Smaller than 3 (if it were, say 42 + 5
3 , then we would rather write 43 + 2

3 )

• With this in mind, we don’t really like the equation 127
3 = 42 + 1

3 because it isn’t about natural
numbers.

• So let’s clear denominators and write 127 = 42 ∗ 3 + 1

• Here, 42 is the quotient and 1 is the remainder.

• Thm: If a, b ∈ Z with b > 0, then there are unique q, r ∈ Z such that a = bq + r and 0 6 r < b

– For proof, let T = {a− bk ∈ N : k ∈ Z}
– Note that T ⊆ N
– Also note that T 6= ∅ since we can pick any k ∈ Z with k 6 a

b and get that a− bk > 0

– By the well ordering principle, we conclude that T has a least element, say r = a− bq
– We’ve now shown that a = bq + r for some r and q; we still need to show that 0 6 r < b
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– r > 0 by the fact that T ⊆ N
– Suppose, by contradiction, that r > b.

– Then r − b > 0 and so we write a = bq + b+ (r − b) and we have r − b = a− b(q + 1).

– But then r − b ∈ T , contradicting the minimality of r

– Hence, r < b

– To see what’s going on, draw the number line

– Next up: check uniqueness.

– The standard way to show uniqueness is to suppose that you have two ways of doing something,
then show that they’re actually the same

– Suppose that a = bq1 + r1 and a = bq2 + r2 where 0 6 r1, r2 < b

– Then 0 = b(q1 − q2) + (r1 − r2), so b(q1 − q2) = r2 − r1
– Hence, b | r2 − r1
– Since 0 6 r2 < b, we can subtract r1 and get −b < −r1 6 r2 − r1 < b− r1 6 b.

– The only multiple of b between −b and b is 0, so r2 − r1 = 0.

– Hence, q2 = q1 and we are done.

• Why is this important?

– One main reason is that we often like to take a positive integer d and classify numbers according
to their remainders when divided by d

– For instance “even” means remainder 0 when divided by 2 and “odd” means remainder 1 when
divided by 2

– Clocks operate on the same principle: to convert from 24 hour time to 12 hour time, you look at
the remainder when divided by 12

4.4 Some Divisibility Examples

• Ex: Show that every n ∈ Z falls into one of the following four categories:

1. Even: n is even

2. Threven: 3 | n
3. Plus one: The remainder when dividing n by 6 is 1

4. Plus five: The remainder when dividing n by 6 is 5

Are the categories disjoint?

• Proof

– Can try to prove with induction, but that’s a mess

– Instead, take n divided by 6 and observe...

– n = 6k + 0: even

– n = 6k + 1: plus one

– n = 6k + 2: even

– n = 6k + 3: threven

– n = 6k + 4: even

– n = 6k + 5: plus five

– Note that the categories are not disjoint; the only overlap occurs at the multiples of 6 which are
both even and threven.

8



• Ex: Show that for all n ∈ Z, 6 | n(n+ 1)(2n+ 1)

• Proof:

– To show that n(n+ 1)(2n+ 1) is a multiple of 6, it suffices to show that it is a multiple of 2 and
a multiple of 3 (see previous example)

– For any n, either n or n+ 1 is even, so 2 | n(n+ 1)(2n+ 1)

– But it’s not clear that one of n, n+ 1, and 2n+ 1 is a multiple of 3.

– Let’s investigate further. If n has the form [blank] (on division by 3) then n+ 1 and 2n+ 1 have
the form [blank]

n n+ 1 2n+ 1

3k 3k + 1 6k + 1
3k + 1 3k + 2 6k + 3
3k + 2 3k + 3 6k + 5

– Note that there is a multiple of 3 in each row, so one of n, n+ 1, and 2n+ 1 is a multiple of 3

4.5 GCDs

• If a and b are integers with either a or b nonzero, the nonzero ones have finite sets of divisors, say A
and B, implying that A ∩B is finite

• Hence, A ∩B has a largest element.

• Def: This largest element is called the greatest common divisor of a and b and we denote it with
gcd(a, b) or just as (a, b)

• Reason for the latter notation: it’s referring to the ideal generated by a and b which is equal to the
ideal generated by gcd(a, b) (for later)

• In the case of a and b being 0, we define (0, 0) = 0

• This lines up with the ideal idea or just makes our statements about gcds true

• Ex: (24, 84) = 12 because the divisors of 24 are ±1,±2,±3,±4,±6,±8,±12,±24 and the divisors of
84 are ±1,±2,±3,±4,±6,±7,±12,±14,±21,±28,±42,±84

• Ex: (n, 0) = n for all n

• Ex: (n, 1) = 1 for all n

• Of particular interest are numbers with (a, b) = 1.

• Def: If (a, b) = 1, we say that a and b are relatively prime or we say that a is (relatively) prime to b.

• We’ll study these more in chapter 3 and we’ll get a better algorithm for computing them than just
“factor and decide”
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