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1 Wilson’s Theorem and Fermat’s Little Theorem

1.1

1.2

Intro
Our goal is to get to quadratic reciprocity as soon as we can.
Quadratic reciprocity essentially describes how to take square roots in modular arithmetic

To get there, we need a couple of special congruences that we're going to try to prove

Wilson’s Theorem
In one of our infinitely many primes proofs earlier, we were looking at numbers of the form n! 4 1

We said they have to have a prime factor > n and we used that to say something like “since there’s a
prime > n for each n, there must be infinitely many primes”

We didn’t talk about what prime factors those numbers have though.
Let’s look at some selected examples

1'+1=2isdiv by 2

21+1=3is div by 3

414+ 1=25is div by 5

6! +1="721isdivby 7

Note that 3! +1 =7 is not div by 4 and 5! + 1 = 121 is not div by 6
So it seems like when p is prime, (p — 1)! + 1 is div by p

Thm: (Wilson): If p is prime, then (p — 1)l = —1 mod p

Proof:

— p = 2 is trivial, so assume p odd
—p-D=pE-HE-2)--2-1

— Note that p — 1 = —1 is its own inverse mod p

— Hence, if < p — 1, then the inverse of z is also < p — 1

— Inverses come in distinct pairs: you saw this on the homework. If z is its own inverse, then 22 = 1
mod p implying that x = £1 mod p

— So the numbers (p—2),...,2 (of which there are p— 3, i.e. evenly many) can be paired with their
inverses and you get a bunch of canceling

— Hence, (p—1)!=p—1=-1 modp



e Fact: the converse is also true, though we won’t prove it

o Ifn

> 2 has (n—1)! = —1 mod n, then n is prime.

e This can be used as a primality test, though an inefficient one since n! takes a while to compute

1.3 Fermat’s Little Theorem

e Something else you noticed on a previous homework: if a € Z, then 3 | a® — a

e Also5|a®—a

e Easy enough to check that 2 | a®> — a

e Note that 41 a* — a if a = 2, so it is not always the case that ™ — a is divisible by n

e But it sure looks like if p is prime, then p | a? — a

e Thm: (Fermat?) If p is prime and a is an integer with p{ a, then a?~* =1 mod p

e Corollary: If a € Z, then o — a is div by p (check both cases)

e Proof:

Consider the numbers of the form a,2a,3a,...,(p —1)a

Note that none are divisible by p

Note that they are pairwise incongruent mod p

Hence, {0,a,2a,...,(p — 1)a} forms a complete set of residues mod p

Now we have
a-2a-3a---(p—1)a=1-2-3---(p—1) modp
a 'p—1!'=(p—1) modp

a?'=1 modp

Applications and Examples

e If p is prime and a € Z, p { a, then a?~2 is an inverse of a mod p

o Ex:

What is the remainder when 40! is divided by 41 - 43 = 17637

Here, we’re going to use Sun-Tsu’s Theorem in kind of a clever way

First, we note that 40! = —1 mod 41 by Wilson’s Theorem

Next, 42! = —1 mod 43 also by Wilson’s Theorem

To get to 40!, we want to multiply by 427! and 41!

4271 is itself (—1) and since 41 = —2 mod 43, we see that —22 is an inverse to 41 mod 43.
Hence, 40! = 42!- 4271 . 417 = (-1) - (=1) - (-22) = —22 mod 43.

Now we want to find an integer that is equivalent to —1 mod 41 and —22 mod 43

Apply Sun-Tsu’s theorem to get z = 1311 mod 1763

: Show that 30 | n? —n for all positive integers n

30 =2-3-5, so we want to look at n° —n mod 2, 3, and 5 separately

mod 2, we note that 0° —0=0 mod 2 and 1° —1 =0 mod 2, so n’ — n is always divisible by 2

3

mod 3, we note that n® —n = (n®)> —n=n3-n=0 mod 3



— mod 5, we note that n° —n=n°-n*—n=n-n*—n=n°

9

—n=0 mod?H

— Hence, n” —n =0 mod 2, 3, and 5 so by Sun-Tsu’s Theorem, it is also congruent to 0 mod 30.

e Ex: Compute the least positive residue of 32°! mod 11
— Since 3! =1 mod 11, we have 3201 = 3200.3 = (310)20.3 =3 mod 11
e Ex: Compute the least positive residue of 5328 mod 101

— We know that 5'°° =1 mod 101, so 54328 = 52 mod 101
— Still hard to compute, but watch this:

52 =25 mod 101

5* =252 =625=19 mod 101

5% =192 =361 =58 mod 101

516 =582 = 3364 = 31 mod 101

528 =516.58 .5 =31.58-19 =24 mod 101
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