
Math 347 Week 5 Group Work Winter 2022

1. Which positive integers have exactly three positive divisors? Which have exactly four positive divisors?

Suppose n has exactly three positive divisors. Then n is not prime because primes have exactly two
positive divisors. Additionally, n cannot have more than one prime factor since if n has two distinct
prime factors (say p and q), then n has at least four positive divisors: 1, p, q, and n. So n must be a
power of a prime: n = pk. But pk has exactly k + 1 positive divisors: 1, p, p2, . . . , pk so we must have
that n = p2 for some prime.

Now suppose that n has exactly four positive divisors. If n is a power of a prime, the previous para-
graph shows that we must have n = p3 for some prime p. If not, then n can be written as n = pq for
some distinct integers p, q > 1. This immediately gives four positive divisors: 1, p, q, and n = pq. If
either p or q is not prime (say p = ab for some a, b > 1), then n also has a and b as factors, contradicting
the fact that n only has 4 positive divisors. Therefore, p and q must be prime.

Hence, a positive integer with four positive divisors must be either the cube of a prime or the product
of two distinct primes.
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2. Let n be a positive integer. Show that the power of the prime p occurring in the prime-power factor-
ization of n! is

bn
p
c+ b n

p2
c+ b n

p3
c+ · · ·

Recall that bxc is the largest integer less than or equal to x.

We introduce a little notation to make the writing clearer. For a prime p and a positive integer k, define
vp(k) := max{j ∈ N : pj | k}. The letter “v” stands for “valuation” and intuitively, vp(k) represents
the number of times p appears in the prime factorization of k. So for example, v3(21 · 36 · 54) = 6 and
v2(37) = 0. The goal of this problem is to show that

vp(n!) = bn
p
c+ b n

p2
c+ b n

p3
c+ · · ·

We’ll do an example first to demonstrate the method that will generalize. Consider n = 10 and p = 2.
Each 2 in the prime factorization of 10! comes from some multiple of 2 which is less than or equal to
10. I.e. the number of 2s in the prime factorization of 10! is the same as the number of 2s in the prime
factorization of 2 · 4 · 6 · 8 · 10. Each of the multiples of 2 less than or equal to 10 contributes at least
one factor of 2 to 10!. There are n

p = 10
2 = 5 such multiples of 2, so we find that there are at least five

2s in the prime factorization of 10!.

But of course some multiples of 2 contribute more than one 2 to the prime factorization of 10!. The
numbers that contribute more than one 2 to the prime factorization of 10! are the multiples of 4 which
are less than or equal to 10. There are b n

p2 c = b 104 c = 2 multiples of 4 which are less than or equal to

10 (the multiples of course are 4 and 8). Hence, we get two more 2s in the prime factorization of 10!
(on top of the five 2s that we got from counting multiples of 2).

Additionally, some multiples of 2 contribute more than two 2s to the prime factorization of 10!. The
numbers that contribute more than two 2s are the multiples of 8 which are less than or equal to 10.
There are b n

p3 c = b 108 c = 1 such multiples of 8 (of course, that one multiple of 8 is 8 itself). The 8
contributes one additional 2 beyond the seven 2s that we already counted.

No number less than or equal to 10 contributes more than three factors of 2 to the prime factorization
of 10! (since those numbers would have to be multiples of 16). Another way of saying this is that
there are b n

p4 c = b 1016c = 0 multiples of 16 less than or equal to 10. And for any k > 4, there will be

b n
pk c = b 10

2k
c = 0 multiples of 2k less than or equal to 10.

In all then, we get 8 factors of 2 dividing 10!: five coming from the multiples of 2, two coming from
the multiples of 4, and one coming from the multiple of 8.

We now proceed to prove this claim more generally. As we argued above in the example, the number
of times p appears in the factorization of n! is equal to the number of multiples of p less than or equal
to n, plus the number of multiples of p2 less than or equal to n, etc. Since there are b n

pk c multiples of

pk less than or equal to n, we have

vp(n!) =

∞∑
k=1

∣∣{j ∈ Z : 1 6 j 6 n and pk | j}
∣∣

=

∞∑
k=1

b n
pk
c
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3. How many zeros are there at the end of 1000!? (the result from the previous problem is helpful here)

A positive integer n ends in k zeros if and only if 10k | n and 10k+1 - n. In terms of prime factors of
n, this is equivalent to stating that 2k | n and 5k | n, but either 2k+1 - n or 5k+1 - n. I.e. n ends in k
zeros if and only if k = min(v2(n), v5(n)).

We set out to compute v2(1000!) and v5(1000!). By the previous problem

v2(1000!) =

∞∑
k=1

b1000

2k
c

= b1000

2
c+ b1000

4
c+ b1000

8
c+ b1000

16
c+ b1000

32
c+ b1000

64
c+ b1000

128
c+ b1000

256
c+ b1000

512
c

= 994

v5(1000!) =

∞∑
k=1

b1000

5k
c

= b1000

5
c+ b1000

25
c+ b1000

125
c+ b1000

625
c

= 249

Therefore, there are 249 zeros at the end of 1000!
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4. Show that
√

2 is irrational using the fundamental theorem of arithmetic.

Suppose by contradiction that
√

2 = a
b for a, b ∈ Z. Then 2 = a2

b2 and rearranging, we can write
2b2 = a2. Factoring both a and b into primes, we observe that v2(2b2) must be odd (because b2 will
have an even number of 2s in its prime factorization) yet v2(a2) must be even. Of course, no number
can be both odd and even, so this is a contradiction. Therefore,

√
2 is irrational.

5. Show that log2 3 is irrational.

Note that x = log2 3 satisfies the equation 2x = 3. Suppose, by contradiction that log2 3 = a
b for

integers a and b. Then 2a/b = 3 and raising both sides to the power of b, we see that 2a = 3b. But this
contradicts the fundamental theorem of arithmetic because it gives two distinct prime factorizations
to the number 2a. Hence, log2 3 is not rational.
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