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1 Wilson’s Theorem and Fermat’s Little Theorem

1.1

1.2

Intro
Our goal is to get to quadratic reciprocity as soon as we can.
Quadratic reciprocity essentially describes how to take square roots in modular arithmetic

To get there, we need a couple of special congruences that we're going to try to prove

Wilson’s Theorem
In one of our infinitely many primes proofs earlier, we were looking at numbers of the form n! 4 1

We said they have to have a prime factor > n and we used that to say something like “since there’s a
prime > n for each n, there must be infinitely many primes”

We didn’t talk about what prime factors those numbers have though.
Let’s look at some selected examples

1'+1=2isdiv by 2

21+1=3is div by 3

4141 =25is div by 5

6! +1="721isdivby 7

Note that 3! +1 =7 is not div by 4 and 5! + 1 = 121 is not div by 6
So it seems like when p is prime, (p — 1)! + 1 is div by p

Thm: (Wilson): If p is prime, then (p —1)! = —1 mod p

Proof:

— p = 2 is trivial, so assume p odd
—p-D=pE-HE-2)--2-1

— Note that p — 1 = —1 is its own inverse mod p

— Hence, if < p — 1, then the inverse of z is also < p — 1

— Inverses come in distinct pairs: you saw this on the homework. If z is its own inverse, then 2 = 1
mod p implying that x = £1 mod p

— So the numbers (p—2),...,2 (of which there are p— 3, i.e. evenly many) can be paired with their
inverses and you get a bunch of canceling

— Hence, (p—1)!=p—1=-1 modp



e Fact: the converse is also true, though we won’t prove it

o Ifn

> 2 has (n—1)! = —1 mod n, then n is prime.

e This can be used as a primality test, though an inefficient one since n! takes a while to compute

1.3 Fermat’s Little Theorem

e Something else you noticed on a previous homework: if a € Z, then 3 | a® — a

e Also5|a®—a

e Easy enough to check that 2 | a®> — a

e Note that 41 a* — a if a = 2, so it is not always the case that a™ — a is divisible by n

e But it sure looks like if p is prime, then p | a? — a

e Thm: (Fermat?) If p is prime and a is an integer with p{ a, then a?~* =1 mod p

e Corollary: If a € Z, then o — a is div by p (check both cases)

e Proof:

Consider the numbers of the form a,2a,3a,...,(p —1)a

Note that none are divisible by p

Note that they are pairwise incongruent mod p

Hence, {0,a,2a,...,(p — 1)a} forms a complete set of residues mod p

Now we have
a-2a-3a---(p—1)a=1-2-3---(p—1) modp
a 'p—1!'=(p—1) modp

a?'=1 modp

Applications and Examples

e If p is prime and a € Z, p { a, then a?~2 is an inverse of a mod p

o Ex:

What is the remainder when 40! is divided by 41 - 43 = 17637

Here, we're going to use Sun-Tsu’s Theorem in kind of a clever way

First, we note that 40! = —1 mod 41 by Wilson’s Theorem

Next, 42! = —1 mod 43 also by Wilson’s Theorem

To get to 40!, we want to multiply by 427! and 41!

4271 is itself (—1) and since 41 = —2 mod 43, we see that —22 is an inverse to 41 mod 43.
Hence, 40! = 42!- 4271 . 417 = (-1) - (=1) - (-22) = —22 mod 43.

Now we want to find an integer that is equivalent to —1 mod 41 and —22 mod 43

Apply Sun-Tsu’s theorem to get z = 1311 mod 1763

: Show that 30 | n? — n for all positive integers n

30 =2-3-5, so we want to look at n° —n mod 2, 3, and 5 separately

mod 2, we note that 0° —0=0 mod 2 and 1° —1 =0 mod 2, so n’ — n is always divisible by 2

3

mod 3, we note that n® —n = (n®)> —n=n3-n=0 mod 3



— mod 5, we note that n° —n=n°-n*—n=n-n*—n=n°

9

—n=0 mod?H
— Hence, n° —n =0 mod 2, 3, and 5 so by Sun-Tsu’s Theorem, it is also congruent to 0 mod 30.
e Ex: Compute the least positive residue of 32°1 mod 11

— Since 31 =1 mod 11, we have 3201 = 3290 .3 = (310)20.3 =3 mod 11
e Ex: Compute the least positive residue of 5328 mod 101

— We know that 5'%° =1 mod 101, so 5%3?® = 52® mod 101

— Still hard to compute, but watch this:

52 =25 mod 101

5 =252 =625 =19 mod 101

5% =192 =361 =58 mod 101

516 = 582 = 3364 = 31 mod 101

528 =516.58 .54 =31.58-19 =24 mod 101

2 FEuler’s Theorem

Refresher and Motivation
e Recall Fermat’s Little Theorem: If p prime, then for any @ 20 mod p, a?~! =1 mod p.
e This is going to be our preferred statement of FLT this term.

e Fact (to be proven later in chapter 10): This theorem is unimprovable. For every prime p, there exists
a#0 mod pso that a® Z1 mod p when 1 <z <p— 1.

Let’s talk about how to generalize it to a composite modulus.

A good modulus to try is 9. If I have a %2 0 mod 9, for what = will I have ¢* =1 mod 97

— 1 to any power is 1 mod 9
— Powers of b mod 9:
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— Question 1: for which values of b is it possible for 4* =1 mod 97

— Answer 1: When (b,9) =1

— Question 2: When (b,9) = 1, what powers of z yield ¥* =1 mod 97

— Answer 2a: When (b,9) =1, % =1 mod 9.

— Answer 2b: When (b,9) = 1, the smallest x so that b* = 1 mod 9 has x | 6. This follows from

the cyclic nature of raising things to powers.

e Prop: Suppose that m > 0 and that b* =1 mod m for some z > 0. Then (b, m) = 1.



Proof:

— Suppose there is a prime p with p | m and p | b.
— Then p | b*

— Also,p|m|b* -1

But then p | b — (b — 1) = 1, a contradiction
— Hence (b,p) =1

So if we want to generalize Fermat’s Little Theorem, we’d better focus solely on the b with (b, m) = 1.
Those are the ones that we can raise to a power and get 1.

For example, when m = 9, we only care about base values
Next question: why is b° =1 mod 9 for all b with (b,9) = 17
Where is the 6 coming from??7?

To be seen...

The Euler Phi Function

For any m, recall that we previously defined (Z / mZ) = {0,1,...,m — 1} as our standard, complete
set of residues

But we also allowed ourselves the flexibility of other complete sets of residues for the purpose of proofs
Now we want to define the subset of (Z / mZ) whose elements are relatively prime to m

Def: Define (Z /mZ)* :={b€ Z/mZ: (b,m) =1}

Ex: (Z/92)" ={1,2,4,5,7,8}

Ex: (Z/52)" ={1,2,3,4}

Ex: (Z/pZ)* ={1,2,...,p— 1} when p is prime

Def: Define o(m) := # (Z / mZ)™

Note the use of phi and varphi

Ex: ¢(9) =6, ¢(5) =4, p(p) =p— 1 when p is prime

Def: Most generally, define a reduced residue system modulo m to be a set S so that:

=[S =¢(m)
— The elements of S are pairwise incongruent modulo m
— Foreachbe S, (bym) =1

Ex: {1,2,4,5,7,8} is a reduced residue system modulo 9. It is not a reduced residue system modulo
10 (because 2 is not relatively prime to 10) nor is it is a reduced residue system modulo 7 (because
1 =8 mod 7 for instance)

Ex: Another reduced residue system mod 9 is {10,2,4,5,7,8}.
More generally, we can replace any number in (Z /mZ)™ with something it’s congruent to mod m:
Ex: Suppose that m > 1, (a,m) =1, and b = a mod m. Show that (b,m) = 1.

— Suppose that p | m and p | b for some prime p.

— Since a = b mod m, there exists k € Z so that a — b = km, i.e. a = km + 0.



— But then p | band p | m, so p|a.
— Contradiction, so no such p exists.
— Hence, (b,m) =1

e Prop: If {ri,...,7,(m)} is a reduced residue system modulo m and (a,m) = 1, then {ary,...,arym}
is also a reduced residue system modulo m.

e Proof:

— Claim 1: ar; is relatively prime to m.

— If p | m is prime, then p { a (since a and m are relatively prime) and p 1 r; (since r; and m are
relatively prime), so p 1 ar;.

— So no prime factor of m is also a factor of ar;. Hence (ar;,m) = 1.

— Claim 2: ar; = ar; mod m implies i = j.

— Divide both sides by a since (a,m) = 1.

— Note that r; = r; mod m implies i = j since {r1,...,r,m)} is a reduced residue system
— Claim 3: #{ar1,...,arym)} = p(m)
— Trivial

e Thm: If m > 0 and a € Z has (a,m) = 1, then a¥"™ =1 mod m

e Proof:
— Let (Z/mZ)* = {ry,... s To(m) }-
— Since a is relatively prime to m, S = {ari,...,ar,m)} is a reduced residue system as well

— Hence, (ary)(arz)(ars) ... (arym)) = rire -« rym) mod m

m) =1 mod m

Divide each side by all the r; (since they are relatively prime to m) and get a#!

Examples
e Ex: Find an inverse for 3 modulo 14

Note that (Z /14Z)* = {1,3,5,9,11,13}, so ¢(14) =6
— Then 35 =1 mod 14, so 3° is an inverse for 3 mod 14.
-~ 32=9 mod 14

- 3*=81=11 mod 14

—35=33=5 mod 14

— Of course, we could have done this by inspection, but this would be better for larger numbers

e Note how this compares to the naive algorithm for inverting ¢ mod m. There are two possible naive
algorithms to check here:

1. Test every number 1,...,m
2. Construct (Z /mZ)™ and test each of the p(m) members

e Compare to: compute ¢(m) and then raise a to the p(m) —1

e Since raising to the p(m) — 1 takes less than ¢(m) — 1 multiplications (using repetetive squaring), and
¢(m) is easy to compute where (Z /mZ)™ is hard to compute, this is quite efficient.

e Ex: Show that if a and m are positive integers with (a,m) = (a —1,m) =1, then 1 + a+a% +--- +
a?™=1 =0 mod m

— Note that (1+a+a®+ - +a?™~1) (a—1)=a®™ —1=0 mod m

— Since (a — 1) is relatively prime to m, it must be the case that m | 1 +a 4 --- + a?(™~1
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