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Chapter 1: The Integers

Greg Knapp
January 12, 2022

Introduction

Fermat’s last theorem
Catalan’s Conjecture: If m,n € Zso, then the only nonzero solution in Z to 2™ —y" = 1is 32 =23 = 1

— Cassels showed (using methods you’ll be able to understand after one or two terms of this class)
that if p and ¢ are prime and =,y € Z satisfy aP — y? = 1, then z is a multiple of ¢ and y is a
multiple of p

— Later, Tijdeman and Langevin (using methods you’ll need a lot more study to understand) showed
that |x|, |y],p, ¢ < exp exp exp exp exp(730)

— The proof was finished by Mihailescu using methods you’ll only need a little bit more study to
understand after this course.

Section 1.1—Numbers and Sequences

Number Systems

First order of business: figure out what numbers we want to study

Before we can do that, we should probably figure out what types of numbers there are

At the heart of everything is the number 0. This is the easiest number.

There are more numbers than 0 of course, but the question is, how can we construct them?
Let’s create a function called “successor”

This function takes in a number and adds 1, i.e. the successor of 0 is 1, the successor of 1 is 2, and so
on.

Now we’ve created the set of natural numbers: N={0,1,2,...}

N comes with the nice operation of addition: if you add any two numbers in N, you get another number
in N.

N also has multiplication in it: if you multiply two numbers in N, you get another number in N.
What do I mean by operation? Something you can do to numbers to remain in the given set.

But N doesn’t come with some of the other operations we like: subtraction and division to name two
To get the negative integers, we could create a “predecessor” function

Or we could say “let’s make every number have an additive inverse” (i.e. if n is a number, let’s make
there be another number x which makes n + z = 0)



Either way, we get the full range of integers Z = {...,—2,-1,0,1,2,...}

We still have addition, multiplication, subtraction, but not division

To give ourselves the division operation, we now have to allow ourselves fractions:

Wenowdeﬁne@z{% | p,q € Z and ¢ # 0}

Now we have all the operations that we like!

Question: have we gotten all the numbers?

Answer: No. I claim that v/2 ¢Q

Proof: (there are lots, including some that are better than this one)

Suppose (by contradiction) that /2 is irrational

Then there exist positive integers a and b so that v/2 = a/b
Define the set S := {kv/2 | k,kv/2 € Z+o}

Note that S is nonempty: bv/2=a € Z and b € Z, so by/2 € S

S is subset of N: therefore, it has a least element (this is called the well-ordering property of
N-—that every nonempty subset of N has a least element)

Call this least element s = tv/2 for t € L~
We claim that there is a smaller element of S than s (and hence, will have a contradiction)
Note that (s—t)\/izs 2 —tv/2 = sV/2 — s =2t — s is an integer

Furthermore, this number is positive because v/2 > 1 (and so sv/2 > s). Therefore, s — t is
positive.

This implies that s —t € Zwg and (s — t)v/2 € Zo.

Therefore, (s —t)v/2 € S.

But (s —t)v2 =sv2 —s=35(v/2— 1) < s because V2 — 1 < 1
Hence, we have found a smaller element of S

This is a contradiction, so we find that \/2 is irrational

Okay, so now we know that the set of real numbers R (which we're not going to carefully define) is
larger than Q.

There are other irrational numbers too, like 7w and e.

Note that v/2 is the root of a polynomial with integer coefficients: 22 — 2

Because of this we say that v/2 is algebraic

Def: A number « is algebraic if there exists a polynomial f(z) with integer coefficients for which

fla)=0
Def: We denote the set of algebraic numbers by Q

Observe, Q has more numbers than R: i is a root of z2 + 1

Question: but does Q contain R? (i.e. do we have all of the numbers?)

Answer: No, but this isn’t obvious!
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Sequences
Def: A sequence is a list of numbers ag, a1, as, as, . ..

It’s often good practice to be able to take the first few terms of the sequence and write down the
formula or come up with the pattern

Ex: Guess a formula for a,, if the first few terms of the sequence are 3,11, 19,27,35,43,...

Def: This forms a special type of sequence called an arithmetic progression: i.e. a sequence of the
form a,a +d,a+ 2d,a + 3d, .. ..

An important feature of an arithmetic progression is that consecutive terms differ by a constant amount:
d
Another important type of sequence is the...

Def: A geometric progression is a sequence of the form a, ar, ar?,ar?, ...

An important feature of a geometric progression is that consecutive terms have a constant ratio: r
Ex: 1,2,4,8,... forms a geometric progression

With these important types of sequences out of the way, we want to focus on why we introduced them:
set sizes

Set Sizes

Def: A set S is countable if it is finite OR there exists a function f : N — S which is one-to-one and
onto (i.e. f is a bijection). A set is uncountable if no such function exists.

— RECALL: f: X — Y is one-to-one (or injective) if for every x1,z2 € X: if f(z1) = f(z2), then
x1 = x5 (i.e. every output has a unique input)

— RECALL f: X — Y is onto (or surjective) if for every y € Y, there exists z € X with f(z) =y
(i.e. every member of y is an output of f)

Observe that an infinite set is countable if and only if it can be written as a sequence

— If S is countably infinite, then there exists a bijection f: N — S.

— Define ag = f(0), a1 = f(1),...,an = f(n),...

— Note that because f is surjective, every element of S is in this sequence.
— If S can be written as a sequence, write its elements as ag, ay, as, ...

— Then define f : N — S by f(n) = ay.

f is surjective because every element of S is some a,, and it is injective because if f(n) = f(m),
then a,, = a,,, which implies that n = m.

Now, to analyze set sizes, we’ll try to write them as sequences.
Claim: the integers are countable
Claim: the rationals are countable

0/1 1/1 -1/1 2/1 -2/1 3/1 -3/1
0/2 1/2 -1/2 2/2 -2/2 3/2 -3/2
0/3 1/3 -1/3 2/3 -2/3 3/3 -3/3

Claim: the reals are uncountable

Fact: the algebraic numbers are countable
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Back to Number Systems
We have the following picture NCZCQCRandQC QCC
Number theorists tend to want to answer questions about N
However, the operations and tools are better in some of the nearby number systems like Z and Q
It’s not obvious, but there are also nice features of Q, R, and C, too (for the purposes of number theory)

We won’t see many of those uses in this course.

Section 1.3—Mathematical Induction

The Principle of Induction
We're familiar with the basic idea of how to prove statements about “all natural numbers” by induction
Let’s start with a more formal statement, however:

The Principle of Mathematical Induction: Suppose that S C N and that 0 € S. Additionally, suppose

that if k € S, then K+ 1€ S. Then S =N.
Note two things about this

1. This doesn’t look like the “proof by induction method with which we're familiar”

2. This is stated like a theorem
To address the first point, how does this principle yield the familiar proof method?
Do this part in two columns:

— Say you want to show that ¢(n) is true for all n (here, I'm using ¢ to refer to a property, not a
function—maybe p(n) is the statement “n is either even or odd”)

Typically with induction you will first show that ¢(0) is true, then show that p(n) — p(n + 1)
for all n. Last, you will conclude that ¢(n) is true for all n

To rephrase this process in terms of the principle, suppose you start with your property ¢
— Let S :={n € N: ¢(n) is true}

— Showing that (0) is true is equivalent to showing that 0 € S

— Showing that ¢(n) — p(n + 1) is equivalent to showing that n € S impliesn+1 € S

— Concluding that ¢(n) is true for all n is equivalent to showing that S = N

To address the second point, the Principle of Mathematical Induction is actually an axiom.

Relation to Well-Ordering and Strong Induction

But it’s interesting to note that it is equivalent to the Well-Ordering Principle: the claim that every
non-empty set of natural numbers has a least element.

Proof that well-ordering implies induction

— Suppose that the well-ordering principle holds: we aim to show induction.
— Suppose that SCNhas0e€ Sandif k€ S, thenk+1€ S

— By contradiction, assume that S # N

— Then X =N\ S is nonempty and hence, has a least element, say .

— Since 0 € S,z #0
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— Since z is the least member of X, it follows that x — 1 ¢ X (and z — 1 € N since = # 0), so
r—1eS.

— But since z — 1 € S, it follows that z = (x — 1) +1 € S.
— Contradiction. Therefore, S = N

The other direction is a little more tricky and is easiest if we pass through an intermediary

The Principle of Strong Induction: Suppose S C N with 0 € S. Suppose also that 0,1,2,....k € S
implies that k+1 € S. Then S = N.

Note first that induction implies strong induction (i.e. anything you can prove by induction, you could
also prove with strong induction)

Here’s something weird that we see:
Proof that strong induction implies well-ordering

— We do this by contrapositive

— Suppose that X C N has no least element and X # &

— Take S = N\ X and note that 0 € S because if 0 were in X, then X would have a least element
— Suppose now that 0,1,...,k € S.

— Then k + 1 ¢ X because that would make X have a least element

— Hence, k+1€ S

— So S satisfies our strong induction properties.

— But note that S # N because X (by hypothesis) is nonempty

— So strong induction fails

The interesting conclusion here is that strong induction implies regular induction (i.e. anything you
can prove with strong induction, you can also prove with weak induction)

This seems odd because strong induction lets you assume so much more: you don’t just get to assume
that n € S when showing that n + 1 € .S, you also get to assume that 0,1,2,... etc. are all in S

Note that these arguments don’t really tell you how to convert a strong induction argument to an
induction argument—they just say that it can be done.

Examples
Show that for all n > 1, n? =>"_ (25 — 1)
Review sigma notation
Proof:

— True for 1

— Now suppose that n* = >"_ (2 — 1)

— Then (n+1)2=n?+2n+1= (Z;;l(zj—l))+2n+1:(1+3+5+~--+2n—1)+2n+1:
Y2 -1
Show that for all n > 4, 2™ < n!

— n =4 check
— Suppose that n > 4 and 2" < n!
— Our goal is to show that 2"+! < (n 4 1)!



— If we think about how we get from 2" to 2"*!, we multiply by 2
— If we think about how we get from n! to (n + 1)!, we multiply by n + 1
— To formalize this, we use the inequalities: 2" =2".2 <nl-2<n!l-(n+1) < (n+1)!

e Show that > ;3¢ =2 — 5.

— n =0 check

— Suppose true for n

— We want to show: S350 & =2 — 5is

— Note that EZ:&%ZW%-FZZ:OQ%:W%—FQ—Q%:Q—#

— Done

e Conjecture a formula for A™ where A = (} 1) and prove your formula by induction.

4 Section 1.5—Divisibility

4.1 The Basics

e Proof by induction relies heavily on the additive properties of the integers

e You might wonder: is there a similar axiom/theorem that relies on multiplicative properties?

This is a bit trickier since the natural numbers are additively generated by 1.

What are the natural numbers multiplicatively generated by?

e Def: If a,b € Z, we say that a divides b if there exists ¢ € Z so that ac = b. In this case, we also say
that b is a multiple of a and that a is a divisor or factor of b. We write a | b if a divides b and a { b
otherwise.

Some notes: a and b are allowed to be positive or negative.

E.g. the divisors of 27 are 1, £3, +9, £27. Hence, —3 | 27, but 5 1 27

e Some essential facts:

1| n for every n

01 n for every n
n|11if and only if n = +1
— n |0 for every n # 0

— a | bif and only if a # 0 and g is an integer

4.2 Some Results
e Thm: If a,b,c € Z, a|b, and b | ¢, then a | c.

— How do we prove this?

— Start with the conclusion: determine that I want to find a k € Z so that ak = ¢

Translate what the hypotheses mean: there exists m,n € Z so that am = b and bn = ¢

Note that I have a ¢ in what I want and a ¢ in my hypotheses: ¢ = bn and try to manipulate the
other side to get what we want

— c¢=bn = (am)n = a(mn)

We’ve now shown that ¢ is a multiple of ¢ and we conclude that a | ¢
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Thm: If a,b,¢,m,n € Z and if ¢ | a and ¢ | b, then ¢ | (ma + nb)

— To think about this theorem, we want to understand what it is saying first
— If you don’t understand it, you can’t prove it

— “If a is a multiple of ¢ and b is a multiple of ¢, then any (integer) linear combination of a and b
is also a multiple of ¢”

— For example: taking a = 10,b = 15, and ¢ = 5, this theorem says that 10m + 15n will be a
multiple of 5. And of course it will: 10m means “move right by 10 units m times” and 15n means
“move right by 15 units n times” and those movements will always land you on a multiple of 5

— To formally prove this, however, we have to show that there exists k € Z so that ck = ma + nb
— We know for sure that there exists r, s € Z so that ¢r = a and ¢s = b.
— Note then that ma + nb = m(er) + n(es) = ¢(mr + ns)

— Hence, k = mr + ns works and we have that ¢ | ma + nb

Integral Division
We said earlier that b | a iff b# 0 and § € Z
But what can we say when bt a? Or when we don’t know if b | a?
You're probably familiar with long division, but let me remind you of the algorithm:
E.g. Divide 127 by 3
We want to generalize this to “Divide a by b,” though there are two questions:

1. What do we get?

2. How do we know we’re going to get it?

Rather than worry too much about how to formalize the algorithm and prove its results (do that in a
CS class), we're going to use this algorithm as inspiration for a theorem

We first need to figure out what we get
Note that the previous result gave us % =424 %

It’s important that the numerator of the fraction is

1. Positive (if it were, say 42 + %1, then we would rather write i—l%)
2. Smaller than 3 (if it were, say 42 + 5, then we would rather write 43 + 2)
With this in mind, we don’t really like the equation 27 = 42 + % because it isn’t about natural

3
numbers.
So let’s clear denominators and write 127 =42+ 3 + 1
Here, 42 is the quotient and 1 is the remainder.
Thm: If a,b € Z with b > 0, then there are unique ¢, € Z such that a =bg+rand 0 < r <b

— For proof, let T ={a—bk e N: k € Z}
Note that T C N
Also note that T' # 9 since we can pick any k € Z with k < 7 and get that a — bk > 0

— By the well ordering principle, we conclude that T" has a least element, say r = a — bq

— We’ve now shown that a = bg + r for some r and ¢; we still need to show that 0 <r <b



r > 0 by the fact that T C N

Suppose, by contradiction, that r > b.

Then r — b > 0 and so we write a = bg+ b+ (r — b) and we have r —b =a — b(qg + 1).
But then » — b € T, contradicting the minimality of r

Hence, r < b

To see what’s going on, draw the number line

Next up: check uniqueness.

The standard way to show uniqueness is to suppose that you have two ways of doing something,
then show that they’re actually the same

Suppose that a = bg; + r1 and a = bgy + 19 where 0 < 71,79 < b

Then 0 = b(q1 — g2) + (r1 — 7r2), 50 b(q1 — q2) =72 — 71

Hence, b | ro — 1

Since 0 < ro < b, we can subtract vy and get —b < —r; <719 — 71 <b—171 < b.
The only multiple of b between —b and b is 0, so ro —r; = 0.

Hence, ¢o = ¢; and we are done.

e Why is this important?

One main reason is that we often like to take a positive integer d and classify numbers according
to their remainders when divided by d

For instance “even” means remainder 0 when divided by 2 and “odd” means remainder 1 when
divided by 2

Clocks operate on the same principle: to convert from 24 hour time to 12 hour time, you look at
the remainder when divided by 12

4.4 Some Divisibility Examples

o Ex:

1
2
3.
4

Show that every n € Z falls into one of the following four categories:

. Even: n is even

. Threven: 3 |n

Plus one: The remainder when dividing n by 6 is 1

. Plus five: The remainder when dividing n by 6 is 5

Are the categories disjoint?

e Proof

Can try to prove with induction, but that’s a mess
Instead, take n divided by 6 and observe...

n = 6k + 0: even

n = 6k + 1: plus one

n = 6k 4+ 2: even

n = 6k + 3: threven

n = 6k + 4: even

n = 6k + 5: plus five

Note that the categories are not disjoint; the only overlap occurs at the multiples of 6 which are
both even and threven.
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Ex: Show that for all n € Z, 6 | n(n + 1)(2n + 1)
Proof:
— To show that n(n + 1)(2n + 1) is a multiple of 6, it suffices to show that it is a multiple of 2 and
a multiple of 3 (see previous example)
— For any n, either n or n+ 1 is even, so 2 | n(n + 1)(2n + 1)
— But it’s not clear that one of n,n + 1, and 2n + 1 is a multiple of 3.

— Let’s investigate further. If n has the form [blank] (on division by 3) then n + 1 and 2n + 1 have
the form [blank]

[ n [ n+1[2n+1]

3k 3k+1 | 6k+1
3k+1 | 3k+2 | 6k+3
3k+2 | 3k+3 | 6k+5

— Note that there is a multiple of 3 in each row, so one of n, n + 1, and 2n + 1 is a multiple of 3

GCDs

If a and b are integers with either a or b nonzero, the nonzero ones have finite sets of divisors, say A
and B, implying that AN B is finite

Hence, AN B has a largest element.

Def: This largest element is called the greatest common divisor of a and b and we denote it with
ged(a, b) or just as (a,b)

Reason for the latter notation: it’s referring to the ideal generated by a and b which is equal to the
ideal generated by ged(a, b) (for later)

In the case of a and b being 0, we define (0,0) =0
This lines up with the ideal idea or just makes our statements about gcds true

Ex: (24,84) = 12 because the divisors of 24 are 1,42, +3, +4, +6, +8,+12, +24 and the divisors of
84 are +1,+2,+3,+4,+6,+£7, £12, +14, £21, +28, +42, +84

Ex: (n,0) =n for all n

Ex: (n,1) =1 for all n

Of particular interest are numbers with (a,b) = 1.

Def: If (a,b) = 1, we say that a and b are relatively prime or we say that a is (relatively) prime to b.

We'll study these more in chapter 3 and we’ll get a better algorithm for computing them than just
“factor and decide”
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