
Week 3 Group Work Math 348, Spring 2022

1. Which positive integers have an odd number of positive divisors?

Since 1 has 1 positive divisor, 1 has an odd number of positive divisors. Now suppose that n > 1
has an odd number of positive divisors. Factoring n = pe11 · · · p

eg
g for distinct primes p1, . . . , pg and

e1, . . . , eg > 1 yields that
τ(n) = (e1 + 1) · · · (eg + 1)

is odd. But (e1 + 1) · · · (eg + 1) is odd if and only if each ei is even. But this is equivalent to stating
that n is a square. Hence, the set of positive integers with an odd number of positive divisors is equal
to the set of perfect squares.

2. What is the product of all positive divisors of a positive integer n?

Case 1: n is not a perfect square.

By the previous problem, n has an even number of positive divisors. In fact, those divisors come in
pairs of the form (d, nd ) for each positive divisor d <

√
n. There are τ(n)/2 such pairs and the product

of two elements in a pair is n. Hence, the product of all positive divisors of n is nτ(n)/2.

Case 2: n is a perfect square.

This time there are an odd number of positive divisors. All but one divisor come in pairs of the form

(d, nd ). There are τ(n)−1
2 such pairs with d <

√
n since the divisor

√
n does not get included in any such

pair. The product of all paired divisors is then n(τ(n)−1)/2 and multiplying by the remaining factor of
n1/2 gives that the product of all positive divisors of n is

n
τ(n)−1)

2 + 1
2 = nτ(n)/2

Therefore, in either case the product of all positive divisors of n is equal to nτ(n)/2
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3. Define the Möbius function, µ : Z>0 → N so that

µ(n) =


1 n = 1

(−1)r n = p1 · · · pr where p1, . . . , pr are distinct primes

0 otherwise

Show that µ(n) is multiplicative.

Suppose that m and n are relatively prime. If m = 1, then µ(mn) = µ(n) = µ(m)µ(n) and so we are
done. Else, if there exists a prime p so that p2 | m, then p2 | mn and so we have µ(mn) = 0 = µ(m)µ(n).
By symmetry, if n = 1 or if n is not squarefree, then µ(mn) = µ(m)µ(n).

The final case to consider is when m and n are products of distinct primes. Write m = p1 · · · pg and
n = q1 · · · qs. Note that we never have pi = qj since m and n are relatively prime. Therefore mn is the
product of distinct primes as well and

µ(mn) = µ(p1 · · · pgq1 · · · qs) = (−1)g+s = µ(m)µ(n)

Therefore, µ is multiplicative.
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4. Compute p(6), pD(6), and pO(6) where O is the set of positive odd integers.

The partitions of 6 are as follows:

6 = 6

= 5 + 1

= 4 + 2

= 4 + 1 + 1

= 3 + 3

= 3 + 2 + 1

= 3 + 1 + 1 + 1

= 2 + 2 + 2

= 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1

We can immediately see that there are 11 partitions of 6, so p(6) = 11. The partitions of 6 into distinct
parts are

6 = 6

= 5 + 1

= 4 + 2

= 3 + 2 + 1

so pD(6) = 4. The partitions of 6 into odd parts are

6 = 5 + 1

= 3 + 3

= 3 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1

and so pO(6) = 4 as well.
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5. Show that for all n > 1,
p(n) = p(n− 1) + p2(n)

Let Sn be the set of all partitions of n. Note that for any (λ1, . . . , λr) ∈ Sn−1, we have that
(λ1, . . . , λr, 1) ∈ Sn. Hence, we can define a function

f : Sn−1 → Sn

(λ1, . . . , λr) 7→ (λ1, . . . , λr, 1)

Note that f is injective because if f(λ1, . . . , λr) = f(ρ1, . . . , ρs), then we have (λ1, . . . , λr, 1) =
(ρ1, . . . , ρs, 1) and so r = s and (λ1, . . . , λr) = (ρ1, . . . , ρs). Moreover, the image of f is exactly
the set of partitions of n which have 1 as a part. This is the complement of the set of partitions which
have all parts > 2, so we find that Sn decomposes as the disjoint union of the image of f with the set
of partitions which have all parts > 2. As a consequence, we now have that p(n) = p(n− 1) + p2(n).
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