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1 Introduction to Congruences

1.1 Definition and Perspective

• We’re going learn about a system that seems unrelated to a lot of things we’ve talked about so far,
but actually provides us with a lot of tools to analyze things.

• Remember linear Diophantine equations: ax + by = c

• We said initially that the equation 6x + 15y = 83 doesn’t have solutions because the LHS has to be a
multiple of 3 and the RHS isn’t.

• We’re going to be able to apply similar reasoning to be able to show (easily) that no integer in the
sequence

11, 111, 1111, 11111, . . .

is a perfect square for instance

• Def: Let m be a positive integer. If a, b ∈ Z, we say that a is congruent to b modulo m if m | (a− b)

– In this case, we write a ≡ b mod m

– Otherwise, we write a 6≡ b mod m

• Ex: 22 ≡ 7 mod 15, −3 ≡ 30 mod 11, 91 ≡ 0 mod 13

• Important: in other classes (maybe discrete, maybe CS), you may have seen the notation mod m to
represent a function.

• I.e. for you, a mod m means “the least positive integer congruent to a modulo m.”

• We are not going to use that notation here because it’s not useful for what we’re going to do with
modular arithmetic.

• Here’s a connection to something we’ve been looking at before: a ≡ b mod m if and only if a is of the
form b + km

• E.g. a ≡ 1 mod 4 if and only if a is of the form 1 + 4k.

• This claim holds because m | (a− b) if and only if there exists k so that mk = a− b, i.e. a = b + mk

• This ties congruences into arithmetic progressions. Every member of the arithmetic progression {b +
mk : k ∈ Z} is congruent to b modulo m
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1.2 Equivalence and Arithmetic

• Importantly, congruence modulo m is what’s called an equivalence relation. This means that it satisfies
three important properties:

• Thm: Let m > 0. Then for all a, b, c ∈ Z:

1. (Reflexive property): a ≡ a mod m

2. (Symmetric property): a ≡ b mod m if and only if b ≡ a mod m

3. (Transitive property): if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m

• Proofs:

– Note that m | 0 = a− a so a ≡ a mod m

– Suppose a ≡ b mod m. Then there exists k ∈ Z so that mk = a − b. But then m(−k) = b − a,
so b ≡ a mod m

– Suppose a ≡ b mod m and b ≡ c mod m. Then there exist k, ` ∈ Z so that a − b = km and
b− c = `m. Then a− c = a− b + b− c = km + `m = (k + `)m so a ≡ c mod m

• In addition to ≡ acting kind of like an equals sign when it comes to the essential properties, it also
plays nicely with arithmetic

• Thm: Let m > 0, and let a, b, c ∈ Z with a ≡ b mod m. Then

– a + c ≡ b + c mod m

– a− c ≡ b− c mod m

– ac = bc mod m

• Proofs left as exercise.

• The other thing that you maybe want to do is divide both sides by c.

• However, this is difficult because even if both sides are divisible by c, you may not be able to make the
conclusion you want.

• Ex: 100 ≡ 20 mod 10 and 100 and 20 are both multiples of 5.

• I.e. 5 · 20 ≡ 5 · 4 mod 10

• But we can’t divide both sides by 5 because 20 6≡ 4 mod 10

• What’s happening here?

• We have 100− 20 = 10k for some k

• To conclude that 100/5 ≡ 20/4 mod 10, we would need to have 100−20
5 = 10` for some integer `, i.e.

we would need k to be a multiple of 5

• But of course 100− 20 = 10 · 8 and 8 is not a multiple of 5

• When we divide by 5, we have to reduce the modulus too: 20− 4 = 2 · 8, so 20 ≡ 4 mod 2

• More generally, if we have ac ≡ bc mod m, then we can write ac− bc = mk and so we know that the
RHS is divisible by c

• Divide both sides by c to get a− b = mk
c .

• We don’t know anything about how k and c interact; maybe we need part of the c to cancel out part
of the m.
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• We can always cancel out the greatest common divisor of m and c so that a− b = m
(c,m) ·

k(c,m)
c and a

little rewriting gives
c

(c,m)
(a− b) =

m

(c,m)
· k

• Since m
(c,m) is relatively prime to c

(c,m) , we know that m
(c,m) must divide a− b, i.e. a ≡ b mod m

(c,m)

• As a consequence, if you start with ac ≡ bc mod m, the best you can do is conclude that a ≡ b
mod m

(c,m)

• Note the following special case: if m and c are relatively prime, you can divide by c mod m.

1.3 The Point

• One of the main purposes of modular arithmetic is to classify the integers into easier to understand
pieces.

• E.g. we know that every integer can be divided by 4 to give some remainder: e.g. n = 4q + r where
r = 0, 1, 2, 3

• Note that this means that n ≡ r mod 4: i.e. every integer is congruent to either 0, 1, 2 or 3 mod 4.

• There are a few ways to visualize this:

. . . ≡ −8 ≡ −4 ≡ 0 ≡ 4 ≡ 8 ≡ . . . mod 4

. . . ≡ −7 ≡ −3 ≡ 1 ≡ 5 ≡ 9 ≡ . . . mod 4

. . . ≡ −6 ≡ −2 ≡ 2 ≡ 6 ≡ 10 ≡ . . . mod 4

. . . ≡ −5 ≡ −1 ≡ 3 ≡ 7 ≡ 11 ≡ . . . mod 4

or you could see the integers going 0,1,2,3,0,1,2,3, etc.

• Of course you could also say that every integer is congruent to either 0, 1, 2, or 7 mod 4.

• We want a phrase which describes a set of numbers with the above property.

• Def: A complete set of residues modulo m is a set S of integers for which every n ∈ Z has n ≡ s
mod m for exactly one s ∈ S

• Ex: For any m, {0, 1, . . . ,m − 1} is a complete set of residues because any n ∈ Z can be written
uniquely as n = qm + r for 0 6 r < m, i.e. r ∈ {0, 1, . . . ,m− 1} and n ≡ r mod m

• Ex: If m is odd, then {−m−1
2 ,−m−3

2 , . . . ,−1, 0, 1, . . . , m−3
2 , m−1

2 } is a complete set of residues modulo
m

• E.g. modulo 7, we have {−3,−2,−1, 0, 1, 2, 3} is a complete set of residues.

• This comes from the fact that the “missing” positive integers (4, 5, 6) have been replaced by themselves
minus 7 (−3,−2,−1)

• Not every complete set of residues has to be consecutive, however.

• Any set of m incongruent integers modulo m forms a complete set of residues modulo m.

• Thm: If r1, . . . , rm is a complete set of residues modulo m and if a is relatively prime to m, then
ar1 + b, ar2 + b, . . . , arm + b is a complete set of residues modulo m.

• Proof

– We have a set of m integers, so it suffices to show that they are incongruent

– Suppose that arj + b ≡ ark + b mod m
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– We can subtract to get arj ≡ ark mod m

– Then, we can divide by a because it is relatively prime to m, so rj ≡ rk mod m

– This only happens if j = k, so arj + b = ark + b

– In other words, for j 6= k, arj + b 6≡ ark + b mod m

1.4 An Example

• Ex: Find the least positive residue of

1! + 2! + 3! + · · ·+ 10!

modulo...3, 4, and 11

– everything about the 3! is 0 mod 3, so just look at the lower terms

– likewise with 4 so...

– With 11, there’s no trick. Reduce each one by 11 and add later to get 0.

• This is kind of cool though because we learn that 1! + 2! + · · ·+ 10! is a multiple of 11 without having
any clue how to factor the number.

2 Linear Congruences

2.1 Modular Equations

• Now that we know the basics of “mod m arithmetic,” it’s good for us to learn the basics of finding
equations to solutions mod m

• Any integer equation that you could write previously can now be written as a congruence

• Ex: 6x + 3 = 7 becomes 6x + 3 ≡ 7 mod 4 or mod 5 or whatever

• Ex: x2 + 2x + 1 = 0 becomes x2 + 2x + 1 ≡ 0 mod 2 for instance.

• Ex: (non) ex = e3 cannot be translated into a modular equation because e3 is not an integer

• Note that “having an integer solution” does not mean that an equation can become a modular equation:
e.g. ex = e3

• Note also that “not having an integer solution” does not mean that an equation can’t become a modular
equation, e.g. 6x + 3 = 7

• Additionally, “not having an integer solution” does not mean that an equation can’t have solutions
mod m. E.g. 6x + 3 ≡ 7 mod 4 has the solution x = 2. 6x + 3 ≡ 7 mod 5 has the solution x = 4.
6x + 3 ≡ 7 mod 6 has no solution.

• That said, “having an integer solution” always implies that an equation has a solution mod m. E.g.
x2 + 2x + 1 = 0 always has the solution x = −1 no matter which modulus you take.

2.2 Linear Equations

• Let’s explore how to solve linear equations.

• If we have something like ax + b ≡ c mod m, then we can always write ax ≡ c − b mod m first, so
there’s no point in considering the +b

• We might as well just consider equations of the form ax ≡ b mod m
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• To solve this equation in Q, we would want to divide by a, but we know that we can’t really do that
here, so let’s do a little further exploration.

• Consider 6x ≡ 9 mod 15.

• We could do this by inspection: 6 · 4 ≡ 9 mod 15, 6 · 9 ≡ 9 mod 15, 6 · 14 ≡ 9 mod 15

• Of course, this also means that 6 · (4 + 15k) ≡ 9 mod 15, 6 · (9 + 15k) ≡ 9 mod 15, etc.

• In fact, we’ve found all the solutions: we only have to check the numbers 0 through 14 and then we
know all the solutions

• Of course, note that we could write the solutions more simply as 4 + 5k. Hmm...

• 6x ≡ 9 mod 15 is equivalent to saying that there exists y with 6x− 9 = 15y, i.e. 6x− 15y = 9

• But we know how to do this because (6, 15) = 3 | 9

• Find a particular solution, say x = 4 and y = 1 and then the general solution looks like x = 4 + 15
(6,15)k

and y = 1− 6
(6,15)k

• We don’t really care about y, but note that we get the same solution description.

• Lesson: linear congruences are equivalent to two-variable linear diophantine equations.

• Thm: Let a, b,m ∈ Z, m > 0. If (a,m) - b, then ax ≡ b mod m has no solutions. If (a,m) | b, then
ax ≡ b mod m has (a,m) incongruent solutions.

– Proof: Exactly what we just did, but with letters instead of numbers

– ax ≡ b mod m if and only if there exists y ∈ Z so that ax + my = b

– This only occurs if (a,m) | b
– If it does occur, then there exists a solution ax0 ≡ b mod m and every other solution looks like

x = x0 + m
(a,m)k

– For 0 6 k < (a,m), these solutions are incongruent mod m:

– Suppose x0 + m
(a,m)k ≡ x0 + m

(a,m)j mod m

– Then m
(a,m)k ≡

m
(a,m)j mod m which gives k ≡ j mod (a,m)

– But 0 6 k, j < (a,m), so k = j

– Therefore, there are (a,m) non congruent solutions

2.3 Special Case: Inverses

• By the theorem, (a,m) = 1 if and only if there is a solution to ax ≡ 1 mod m.

• This is saying that there exists a multiplicative inverse to a modulo m.

• E.g. 7 · 5 ≡ 1 mod 34, so 5 is an inverse of 7 and vice versa mod 34.

• Note that we can use this fact to easily solve 7x ≡ 12 mod 34

• Multiply both sides by 5 to give x ≡ 60 ≡ 26 mod 34

• That’s the only solution since (7, 34) = 1

• More generally, there’s a unique solution to ax ≡ b mod m when (a,m) = 1

• Additionally, consider the case when p is prime

• Then (a, p) = 1 for all 0 < a < p and so a is always invertible mod p.

• Hence, you can solve every linear equation mod p.
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3 Sun-Tsu’s Theorem

3.1 Intro

• In the previous section, we discussed solving a single equation modulo m

• Maybe the next step is to solve a system of equations mod m

• Systems of linear equations can be manageable

• The next thing that we’ll consider is a single equation with multiple moduli.

• It’s kind of hard to motivate this actually.

• This is really useful though.

• Are there any integers x satisfying x ≡ 1 mod 5 and x ≡ 3 mod 7?

• Neither 1 nor 3 fits the bill, so we have to dig a little deeper.

• Let’s add multiples of 7 to 3 to see what we find.

• Letting an = 3 + 7n, we have a0 = 3 (3 mod 5), a1 = 10 (0 mod 5), a2 = 17 (2 mod 5), a3 = 24 (4
mod 5), a5 = 31 (finally 1 mod 5)

• Hence, x = 31 works

• Notice that we cycled through all of the congruence classes mod 5 when we took a number and added
multiples of 7 to it.

• This is because 7 is invertible mod 5: if 3 + 7n ≡ 3 + 7m mod 5, then we’d have n ≡ m mod 5, so
3, 3 + 7, 3 + 14, 3 + 21, 3 + 28 must be distinct mod 5

• Are there any other solutions? (warm-up exercise)

• Yes: anything of the form 31 + 35k is a solution!

3.2 The Theorem

• We’re going to call this theorem Sun-Tsu’s Theorem since Sun-Tsu gave the earliest known statement
of the theorem

• It’s commonly called the Chinese Remainder Theorem

• Why is that a problematic name?

• (Because there are no other theorems named after entire groups of people)

• Ch’in Chiu-Shao published the first known proof of this fact

• Thm: Let m1, . . . ,mr be pairwise relatively prime positive integers. Then the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr

has a unique solution modulo M = m1 . . .mr

• Proof
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– Define Lk = M
mk

= m1m2 · · ·mk−1mk+1 · · ·mr

– Note that (Lk,mk) = 1 since the mj are pairwise relatively prime

– Hence for each 1 6 i 6 r, there exists yk ∈ Z so that Mkyk ≡ 1 mod mk

– Hence, akMkyk ≡ ak mod mk

– Now define x = a1M1y1 + a2M2y2 + · · ·+ arMryr

– Observe that x ≡ a1 mod m1 etc.

– Hence, we’ve solved the system of congruences

– Now we want to show that our solution is unique mod M

– Suppose that y also has y ≡ ak mod mk for all 1 6 k 6 r

– Then y ≡ x mod mk implying mk | y − x for all k

– But then m1 · · ·mr | y − x since the mk are relatively prime

– Therefore, y ≡ x mod M

3.3 Examples

– Ex: Solve x ≡ 1 mod 2, x ≡ 2 mod 3, x ≡ 3 mod 5

∗ M = 30, L1 = 15, L2 = 10, L3 = 6

∗ Want to solve 15y1 ≡ 1 mod 2, 10y2 ≡ 1 mod 3, and 6y3 ≡ 1 mod 5

∗ This gives y1 = 1, y2 = 1, and y3 = 1

∗ We can then take x = 15 · 1 + 10 · 2 + 6 · 3 = 53. Could also have taken 23 or anything else
≡ 23 mod 30.

– Ex: Find all solutions to

x ≡ a3 mod 3

x ≡ a5 mod 5

x ≡ a11 mod 11

x ≡ a13 mod 13

∗ Note M = 2145 and we have L3 = 715, L5 = 429, L11 = 195, and L13 = 165

∗ Solving 715y3 ≡ 1 mod 3 gives y3 = 1

∗ Solving 429y5 ≡ 1 mod 5 gives y5 = 4

∗ Solving 195y11 ≡ 1 mod 11 gives y11 = 7

∗ Solving 165y13 ≡ 1 mod 13 gives y13 = 3

∗ Then the solution looks like 715a3 + 4 · 429a5 + 7 · 195a11 + 3 · 165a13 mod 2145

• Ex: Solve

2x ≡ 1 mod 5

3x ≡ 9 mod 6

4x ≡ 1 mod 7

5x ≡ 9 mod 11
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