Homework 3 Math 348, Spring 2022

1. Define Liouville’s function \(n) so that \(1) = 1 and for n > 2, A(n) = (=1)1F"T¢ when the prime
factorization of n is p§* - pg’. Is X multiplicative? Is X\ completely multiplicative?

We claim that A is completely multiplicative. To see this, pick any a,b € Z~o. Without loss of
generality, we can write

a = ptlll .. .p;g
b — plil . pgq
for distinct primes py,...,p, and exponents ai,...,aq,by,...,by > 0. Note that A\(a) = (—1)%+ "+

even if some of the a; are 0 (and we apply similar reasoning in the remainder of the problem). Hence,

Aab) = A (p 1ot
ar+bi+tagtby

(=1)
(_1)a1+¢12+“'+ag . (_1)b1+b2+"‘+bg
A

(@) - A(b)

Since A(ab) = A(a)A(b) for all positive a, b, we conclude that A is completely multiplicative. In partic-
ular, this implies that A is also multiplicative.
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2. An arithmetic function f is said to be additive if f(mn) = f(m)+ f(n) for all relatively prime positive
integers m and n. f is said to be completely additive if f(mn) = f(m)+ f(n) for all positive integers
m and n. For any prime integer p, define the function vy(n) by defining

(a)

vp(n) := max{k € N: p* | n}

Is v, additive? Is it completely additive?

We first claim that v,(m) = k if and only if m = pF - £ for some ¢ € Z where (¢,p) = 1. If
vp(m) = k, then p¥ | m, but p**1 { m. So there exists ¢ € Z so that m = p*¢. If p | ¢, then
p**+1 | m, which would be a contradiction. Hence, (p,#) = 1. For the converse, if m = p¥¢ where
(¢,p) = 1, we see that p*! cannot divide m: if it did, then p**! | p*¢ and so p | £, which would
contradict the fact that (¢,p) = 1. Therefore, k = max{n : p" | m} = v,(m).

With that technical point out of the way, we proceed to prove that v, is completely additive.
Suppose that a,b are positive integers with v,(a) = k and v,(b) = £. Write a = p*m for some
m € Z with (m,p) = 1 and b = p‘n for some n € Z with (n,p) = 1. Then ab = p***mn. Note
that (p, mn) = 1 because p is prime and p { m,n. Hence, v,(ab) = k + € = v,(a) + vy(b).

Therefore, v, is completely additive and hence, is also additive.

Show that for any positive integers a and b,
vpla+ ) > min(up(a), vy (5))
Suppose that v,(a) = k and v,(b) = £. Write a = p*m for some m € Z with (p,m) = 1 and write

b = p’n for some n € Z with (n,p) = 1. Without loss of generality, we may assume that k > ¢, so
min(v,(a),vp(b)) = £. Then note that

a+b=p"m+p'n=p' P tm +n)
In particular, p’ | a + b, so £ € {k € N: p* | a + b}. Therefore

min(v,(a), vy (b)) = £ < max{k € N: p* | a + b} = v,(a +b)



Homework 3 Math 348, Spring 2022

3. Find all positive integers n with o(n) = 12.

Note that o(1) = 1, so we may assume that n > 1. Hence, we can write n = p§' - - - pg® where p1,...,p,
are distinct primes and eq,...,e4 > 0. Then using the fact that ¢ is multiplicative, we find that

12 = 0'(p§1 .. p;g) = O'(pil) P g(pgg)

We can conclude that for each prime power divisor of n, we must have o(p;*) | 12. Therefore, we can
first solve o(p¢) = 1,2,3,4,6,12 for a prime p and exponent e > 0 before compiling those solutions
into a solution of o(n) = 12.

Suppose that o(p¢) = 1. Since 1 = o(p®) > p®+1 > p°, we find that p® < 1, a contradiction. Therefore,
no prime power has o(p®) = 1.

Suppose that o(p®) = 2. Again, 2 = o(p®) > p¢, which is a contradiction. So no prime power has
o(p®) =2.

Suppose that o(p®) = 3. Then 3 = o(p®) > p° forcing p® = 2, so p =2 and e = 1. It is easy to check
that o(2) = 3.

Suppose that o(p¢) = 4. Then 4 = o(p¢) > p° forcing p = 2 or p = 3. If p = 2, then e > 1 (else
a(p®) = 3 as in the previous case). But o(2¢) > 0(2%) = 7 > 4, so p # 2. Hence p = 3 forcing e = 1.
Again, one can check that o(3) = 4.

We claim that we do not need to check the case when o(p®) = 6. If o(p;*) = 6 for some ¢, then we

would also have to have a(pj ) = 2 for some j. But we already found that this cannot happen.

Finally, suppose that o(p®) = 12. Then 12 > p°. The following table lists the sum of divisors for
all prime powers less than 12 (skipping 2 and 3 since we computed their sums of divisors in previous
parts):

and we conclude that the only possibility is p¢ = 11.

p° |4
7

78911
O'(pe)‘ 8

5
6[8[15]13]12

From the above information, we conclude that the only possible values of n with o(n) =12 are n =6
and n = 11.
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4. A positive integer n > 1 is highly composite if T(m) < 7(n) whenever m < n.

(a)

Find the first five highly composite numbers

Here is a table of values of 7(n):

n 1‘
7(n) 1‘

\9 10 [ 11 | 12
3

\3\\\
2 | 1276

4
[2]3]2]4
n |13 14]15 |16 17 | 1819 |20 |21 | 22|23 |24
rn)| 24452425 ][4]4]2]38

and so we see that the first five highly composite numbers are 2, 4, 6, 16, and 24.

Show that if n is highly composite and m is a positive integer with 7(m) > 7(n), then there exists
a highly composite integer k so that n < k < m. Conclude that there are infinitely many highly
composite integers.

Suppose that n is highly composite and m is a positive integer with 7(m) > 7(n). There are
(at least) two approaches one could take to proving that there exists a highly composite integer
between n and m.

Approach 1:

Let S = {k:7(k) > 7(n)}. Since 7(m) > 7(n), we see that m € S so that S # &. By the well-
ordering principle, S has a least element, say ¢. We claim that ¢ is highly composite. To see this,
suppose that k < ¢. Then k ¢ S because ¢ is the least element of S. Hence, 7(k) < 7(n) < 7(£).
Therefore, ¢ is highly composite. Moreover, { < m because m € S and ¢ is the least element of
S. Finally, £ > n because any k < n has 7(k) < 7(n), so k ¢ S. Therefore, there is a highly
composite integer ¢ with n < £ < m.

Approach 2:

Notice that S := {7(k) : n < k < m} is a finite set and hence, has a maximum. Let M =
maxges 7(k) and suppose that k € S is the minimal element of S with 7(k) = M (here, we again
use the fact that S is finite). We claim that % is highly composite. To see this, suppose that
¢ < k. Then if £ > n, we have £ € S so 7({) < M = 7(k). But k is the smallest member of S
with 7(k) = M, so we must have 7(¢) < M = 7(k). If £ < n, then since n is highly composite,
7€) < 7(n) < 7(m) < M = 7(k). Therefore, 7(¢) < 7(k), so k is highly composite and n < k < m.

To conclude the proof, we note that the set {r(n) : n € N} is unbounded. In particular, for any
prime p and e > 0, 7(p®) = e + 1 which goes to infinity as e goes to infinity. If, by contradiction,
there were only finitely many highly composite integers, let n be the maximal highly composite
integer. Since 7 is unbounded, there exists m > n so that 7(m) > 7(n). By the first part of this
problem, there exists & > n so that k is highly composite, contradicting the fact that n is the
largest highly composite integer. Hence, there must be infinitely many highly composite integers.



