
Homework 3 Math 348, Spring 2022

1. Define Liouville’s function λ(n) so that λ(1) = 1 and for n > 2, λ(n) = (−1)e1+···+eg when the prime
factorization of n is pe11 · · · p

eg
g . Is λ multiplicative? Is λ completely multiplicative?

We claim that λ is completely multiplicative. To see this, pick any a, b ∈ Z>0. Without loss of
generality, we can write

a = pa1
1 · · · pag

g

b = pb11 · · · pbgg

for distinct primes p1, . . . , pg and exponents a1, . . . , ag, b1, . . . , bg > 0. Note that λ(a) = (−1)a1+···+ag

even if some of the ai are 0 (and we apply similar reasoning in the remainder of the problem). Hence,

λ(ab) = λ
(
pa1+b1
1 · · · pag+bg

g

)
= (−1)a1+b1+···+ag+bg

= (−1)a1+a2+···+ag · (−1)b1+b2+···+bg

= λ(a) · λ(b)

Since λ(ab) = λ(a)λ(b) for all positive a, b, we conclude that λ is completely multiplicative. In partic-
ular, this implies that λ is also multiplicative.
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2. An arithmetic function f is said to be additive if f(mn) = f(m) + f(n) for all relatively prime positive
integers m and n. f is said to be completely additive if f(mn) = f(m) + f(n) for all positive integers
m and n. For any prime integer p, define the function vp(n) by defining

vp(n) := max{k ∈ N : pk | n}

(a) Is vp additive? Is it completely additive?

We first claim that vp(m) = k if and only if m = pk · ` for some ` ∈ Z where (`, p) = 1. If
vp(m) = k, then pk | m, but pk+1 - m. So there exists ` ∈ Z so that m = pk`. If p | `, then
pk+1 | m, which would be a contradiction. Hence, (p, `) = 1. For the converse, if m = pk` where
(`, p) = 1, we see that pk+1 cannot divide m: if it did, then pk+1 | pk` and so p | `, which would
contradict the fact that (`, p) = 1. Therefore, k = max{n : pn | m} = vp(m).

With that technical point out of the way, we proceed to prove that vp is completely additive.
Suppose that a, b are positive integers with vp(a) = k and vp(b) = `. Write a = pkm for some
m ∈ Z with (m, p) = 1 and b = p`n for some n ∈ Z with (n, p) = 1. Then ab = pk+`mn. Note
that (p,mn) = 1 because p is prime and p - m,n. Hence, vp(ab) = k + ` = vp(a) + vp(b).

Therefore, vp is completely additive and hence, is also additive.

(b) Show that for any positive integers a and b,

vp(a+ b) > min(vp(a), vp(b))

Suppose that vp(a) = k and vp(b) = `. Write a = pkm for some m ∈ Z with (p,m) = 1 and write
b = p`n for some n ∈ Z with (n, p) = 1. Without loss of generality, we may assume that k > `, so
min(vp(a), vp(b)) = `. Then note that

a+ b = pkm+ p`n = p`(pk−`m+ n)

In particular, p` | a+ b, so ` ∈ {k ∈ N : pk | a+ b}. Therefore

min(vp(a), vp(b)) = ` 6 max{k ∈ N : pk | a+ b} = vp(a+ b)
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3. Find all positive integers n with σ(n) = 12.

Note that σ(1) = 1, so we may assume that n > 1. Hence, we can write n = pe11 · · · p
eg
g where p1, . . . , pg

are distinct primes and e1, . . . , eg > 0. Then using the fact that σ is multiplicative, we find that

12 = σ(pe11 · · · pegg ) = σ(pe11 ) · · ·σ(pegg )

We can conclude that for each prime power divisor of n, we must have σ(peii ) | 12. Therefore, we can
first solve σ(pe) = 1, 2, 3, 4, 6, 12 for a prime p and exponent e > 0 before compiling those solutions
into a solution of σ(n) = 12.

Suppose that σ(pe) = 1. Since 1 = σ(pe) > pe+1 > pe, we find that pe < 1, a contradiction. Therefore,
no prime power has σ(pe) = 1.

Suppose that σ(pe) = 2. Again, 2 = σ(pe) > pe, which is a contradiction. So no prime power has
σ(pe) = 2.

Suppose that σ(pe) = 3. Then 3 = σ(pe) > pe forcing pe = 2, so p = 2 and e = 1. It is easy to check
that σ(2) = 3.

Suppose that σ(pe) = 4. Then 4 = σ(pe) > pe forcing p = 2 or p = 3. If p = 2, then e > 1 (else
σ(pe) = 3 as in the previous case). But σ(2e) > σ(22) = 7 > 4, so p 6= 2. Hence p = 3 forcing e = 1.
Again, one can check that σ(3) = 4.

We claim that we do not need to check the case when σ(pe) = 6. If σ(peii ) = 6 for some i, then we
would also have to have σ(p

ej
j ) = 2 for some j. But we already found that this cannot happen.

Finally, suppose that σ(pe) = 12. Then 12 > pe. The following table lists the sum of divisors for
all prime powers less than 12 (skipping 2 and 3 since we computed their sums of divisors in previous
parts):

pe 4 5 7 8 9 11
σ(pe) 7 6 8 15 13 12

and we conclude that the only possibility is pe = 11.

From the above information, we conclude that the only possible values of n with σ(n) = 12 are n = 6
and n = 11.
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4. A positive integer n > 1 is highly composite if τ(m) < τ(n) whenever m < n.

(a) Find the first five highly composite numbers

Here is a table of values of τ(n):

n 1 2 3 4 5 6 7 8 9 10 11 12
τ(n) 1 2 2 3 2 4 2 4 3 4 2 6

n 13 14 15 16 17 18 19 20 21 22 23 24
τ(n) 2 4 4 5 2 4 2 5 4 4 2 8

and so we see that the first five highly composite numbers are 2, 4, 6, 16, and 24.

(b) Show that if n is highly composite and m is a positive integer with τ(m) > τ(n), then there exists
a highly composite integer k so that n < k 6 m. Conclude that there are infinitely many highly
composite integers.

Suppose that n is highly composite and m is a positive integer with τ(m) > τ(n). There are
(at least) two approaches one could take to proving that there exists a highly composite integer
between n and m.

Approach 1:

Let S = {k : τ(k) > τ(n)}. Since τ(m) > τ(n), we see that m ∈ S so that S 6= ∅. By the well-
ordering principle, S has a least element, say `. We claim that ` is highly composite. To see this,
suppose that k < `. Then k /∈ S because ` is the least element of S. Hence, τ(k) 6 τ(n) < τ(`).
Therefore, ` is highly composite. Moreover, ` 6 m because m ∈ S and ` is the least element of
S. Finally, ` > n because any k 6 n has τ(k) 6 τ(n), so k /∈ S. Therefore, there is a highly
composite integer ` with n < ` 6 m.

Approach 2:

Notice that S := {τ(k) : n < k 6 m} is a finite set and hence, has a maximum. Let M =
maxk∈S τ(k) and suppose that k ∈ S is the minimal element of S with τ(k) = M (here, we again
use the fact that S is finite). We claim that k is highly composite. To see this, suppose that
` < k. Then if ` > n, we have ` ∈ S so τ(`) 6 M = τ(k). But k is the smallest member of S
with τ(k) = M , so we must have τ(`) < M = τ(k). If ` 6 n, then since n is highly composite,
τ(`) 6 τ(n) < τ(m) 6M = τ(k). Therefore, τ(`) < τ(k), so k is highly composite and n < k 6 m.

To conclude the proof, we note that the set {τ(n) : n ∈ N} is unbounded. In particular, for any
prime p and e > 0, τ(pe) = e+ 1 which goes to infinity as e goes to infinity. If, by contradiction,
there were only finitely many highly composite integers, let n be the maximal highly composite
integer. Since τ is unbounded, there exists m > n so that τ(m) > τ(n). By the first part of this
problem, there exists k > n so that k is highly composite, contradicting the fact that n is the
largest highly composite integer. Hence, there must be infinitely many highly composite integers.
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