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1 The Order of an Integer and Primitive Roots

1.1 Prologue

• Everything we’re about to say follows from the fact that (Z / nZ)
×

is a finite abelian group

• If you know things about finite abelian groups, put everything that we say in this chapter into that
context in your mind

1.2 Motivation and Def of Order

• Recall how we started the term with Euler’s theorem: If (a, n) = 1, then aϕ(n) ≡ 1 mod n.

• We then went to explore how to compute ϕ(n) and we got this cool formula:

ϕ(n) = n ·
∏
p|n

1− 1

p

• After that, we let ourselves get sidetracked by the fact that ϕ was multiplicative and we explored a
bunch of other stuff

• We’re going to return to where we started though: given a, n ∈ Z>0 with (a, n) = 1, which values of x
yield ax ≡ 1 mod n?

• Let’s return to our example from chapter 6 (use as warm-up exercise):

x 1 2 3 4 5 6 7 8
1x 1 1 1 1 1 1 1 1
2x 2 4 8 7 5 1 2 4
4x 4 7 1 4 7 1 4 7
5x 5 7 8 4 2 1 5 7
7x 7 4 1 7 4 1 7 4
8x 8 1 8 1 8 1 8 1

• Recall that ϕ(9) = 6

• We already know (by Euler’s theorem) that column 6 will have all 1s

• But notice that for some elements, we hit 1 sooner.

• Also for some elements, we don’t hit 1 until column 6.

• Let’s temporarily define the order of an element to be the least positive x so that ax ≡ 1 mod n (it’s
not clear at this point that this is a good definition)

• What are the orders of various elements?
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– Order of 1 is 1

– Order of 2 is 6

– Order of 4 is 3

– Order of 5 is 6

– Order of 7 is 3

– Order of 8 is 2

• Notice that all of the orders are divisors of 6.

• Notice also that any row of an element of order 6 contains a reduced residue system

• How many of these observations can we make for other moduli?

• For any n, will column ϕ(n) have all 1s?

• For any n, will there be elements of order < ϕ(n)?

• For any n will there be some element of order = ϕ(n)?

• For any n and a ∈ (Z / nZ)
×

, will the order of a divide ϕ(n)?

• For any n and a ∈ (Z / nZ)
×

of order ϕ(n), will {ax : 1 6 x 6 ϕ(n)} be a reduced residue system
modulo n?

• Let’s look also at n = 8:

x 1 2 3 4
1x 1 1 1 1
3x 3 1 3 1
5x 5 1 5 1
7x 5 1 5 1

• ϕ(8) = 4

• Orders of elements are 1 and 2

• Note that column 4 contains all 1s

• Note that there are elements of order < ϕ(n)

• There is no element of order = ϕ(n)

• The order of every element divides ϕ(n)

• The last question doesn’t apply

• Go back to our general question of “for which values of x is ax ≡ 1 mod n?”

• We can answer this question by cheating: Let S = {x : ax ≡ 1 mod n}

• S is nonempty because ϕ(n) ∈ S

• By the well-ordering principle, S has a least element

• Def: For any a, n ∈ Z>0 with (a, n) = 1, define the order of a modulo n to be the least integer x so
that ax ≡ 1 mod n. We denote this number by ordn(a)
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1.3 Examples

• From the previous examples, we have

– ord8(1) = 1 and ord9(1) = 1

– ord9(2) = 6

– ord8(3) = 2

– ord9(4) = 3

– ord8(5) = 2 and ord9(5) = 6

– ord8(7) = 2 and ord9(7) = 3

– ord9(8) = 2

• There’s not really a great pattern for us to draw on here.

1.4 Fact Collection

• Given a, n ∈ Z>0 with (a, n) = 1, let’s reconsider the set S = {x > 0 : ax ≡ 1 mod n}

• Let’s look at n = 9 and a = 4

• Exercise: what is S for these values of n and a?

• S ends up being the set of all multiples of 3 = ord9(4) = ordn(a)

• There’s a reason for this: the list of powers of 4 cycles through 3 different numbers and we hit 1 every
3 powers of 4

• More generally, we have

• Thm: Suppose a, n ∈ Z>0 with (a, n) = 1. Then for any x ∈ Z>0, ax ≡ 1 mod n if and only if
ordn(a) | x

• Proof:

– First suppose ordn(a) | x
– Then there exists k ∈ N so that x = k ordn(a)

– Hence, ax ≡ ak ordn(a) ≡
(
aordn(a)

)k ≡ 1 mod n

– Next suppose that ax ≡ 1 mod n

– (We want to show that x is a multiple of ordn(a) and we know that ordn(a) is the least power of
a to yield 1 mod n...what do you think we might need to do for this?)

– Use Euclidean division to write a = q ordn(a) + r where 0 6 r < ordn(a)

– Then
1 ≡ ax ≡ aq ordn(a)+r ≡ ar mod n

– ordn(a) is the least positive power of a congruent to 1 mod n and since 0 6 r < n, we must have
r = 0

– Hence x is a multiple of ordn(a)

• We now know that whenever ax ≡ 1 mod n, x is a multiple of ordn(a).

• But there’s something that we can always plug in for x: x = ϕ(n)

• Hence, ordn(a) | ϕ(n)

• So the order of an integer is always a divisor of ϕ(n)
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• Moreover, we can say something a little bit better than just ax ≡ 1 mod n whenever x is a multiple
of ordn(a)

• Our table for powers of 4 mod 9 repeated: every time I had a power that was a multiple of 3, we got 1

• Every time we had a power that was one more than a multiple of 3, we got 4

• Every time we had a power that was two more than a multiple of 3, we got 7

• So it seems that if x ≡ y mod 3, then 4x ≡ 4y mod 9

• More generally, we can say the following:

• Suppose that a, n ∈ Z>0 and (a, n) = 1. Then for any x, y ∈ Z>0, ax ≡ ay mod n if and only if x ≡ y
mod ordn(a)

• Proof:

– First suppose that x ≡ y mod ordn(a).

– WLOG, x > y

– Then x = y + k ordn(a) for some k > 0

– So ax ≡ ay+k ordn(a) ≡ ay mod n

– Now if ax ≡ ay mod n, we can divide both sides by ay again assuming x > y

– Then ax−y ≡ 1 mod n, so ordn(a) | x− y
– I.e. x ≡ y mod ordn(a)

1.5 Primitive Roots

• Let’s further explore the concept of numbers which have maximal order.

• We already know that for some n, there’s no a ∈ (Z / nZ)× with ordn(a) = ϕ(n)

• Can we classify for which n this property holds?

• If such an a exists, what can we learn about a?

• Def: Suppose n is a positive integer and a ∈ (Z / nZ)×. Then a is a primitive root modulo n if
ordn(a) = ϕ(n)

• For example, we saw that 9 has 2 and 7 as primitive roots

• We also saw that 8 has no primitive roots.

• Exercise: do 10,11,12, and 13 have primitive roots?

• Ex: Show that 3 is a primitive root mod 17

– Naive method: compute 3x for 1 6 x 6 16.

– Better method:

– Note that ϕ(17) = 16 which has divisors 1,2,4,8,16

– These are the possible orders of 3, so we compute

32 ≡ 9 mod 17

34 ≡ 81 ≡ 13 mod 17

38 ≡ 169 ≡ 16 mod 17

so the order of 3 must be 16. Hence, 3 is a primitive root.
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• Here’s a nice feature of primitive roots:

• Thm: If n is a positive integer and a ∈ (Z / nZ)×, then

S = {aj : 1 6 j 6 ϕ(n)}

is a reduced residue system modulo n

• Pf:

– We’ll show two things:

∗ All elements of S are relatively prime to n

∗ All elements of S are distinct modulo n

– Once we’ve done this, we’ll know that we have a reduced residue system

– For the first, note that (a, n) = 1 implies that (aj , n) = 1, so we’re done there

– For the second, note that if ai ≡ aj mod n with i 6 j, we can divide both sides by ai to get
1 ≡ aj−i mod n

– But then j − i must be a multiple of ordn(a) = ϕ(n)

– But j − i < ϕ(n), so j = i

• Once we know that an integer has a primitive root, we want to know how many it has

• Suppose that a is a primitive root

• Then (Z / nZ)× is generated by the powers of a

• So it would be nice to know what the order of au is for 1 6 u 6 ϕ(n)

• In fact, we can generally do this without the assumption that a is a primitive root.

• Thm: If a ∈ (Z / nZ)
×

, ordn(a) = t, and u ∈ Z>0, then

ordn(au) =
t

(t, u)

• Proof:

– Unfortunately unenlightening

– Let s = ordn(au)

– v = (t, u)

– t = t1v

– u = u1v

– We know that (t1, u1) = 1

– Because t1 = t
(t,u) , we want to show that s = ordn(au) = t1

– We’ll employ a common trick and show that s | t1 and t1 | s
– First,

(au)t1 = (au1v)t/v = atu1 ≡ 1 mod n

because ordn(a) = t

– Hence, s | t
– Next,

(au)s ≡ 1 mod n

we get t | us
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– Hence t1v | u1vs implying that t1 | u1s
– But since (t1, u1) = 1, t1 | s
– Therefore, t1 = s and we’re done.

• More interesting is the following corollary

• Cor: Suppose that r is a primitive root modulo n. Then ru is a primitive root if and only if
(u, ϕ(n)) = 1

• Proof:

– By the previous theorem

ordn(ru) =
ordn(r)

(u, ordn(r))

=
ϕ(n)

(u, ϕ(n))

which equals ϕ(n) if and only if (u, ϕ(n)) = 1

• As a consequence, if n has a primitive root, then it has ϕ(ϕ(n)) primitive roots.

• Ex: 2 is a primitive root modulo 11. Find all primitive roots modulo 11

– ϕ(11) = 10, so we want to look at raising 2 to powers which are relatively prime to 10.

– These powers are 21, 23, 27, and 29 yielding 2, 8, 7, and 6

2 Primitive Roots for Primes

2.1 Intro

• Goal: to provide a partial answer to the question of: which integers have primitive roots?

• Warm-up: starting at n = 2, which integers have primitive roots?

• Make a conjecture based on that

• Yes: 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, 23, 25, 26, 27, 29

• Make a conjecture based on that

• No: 8, 12, 15, 16, 20, 21, 24, 28, 30

• Make a conjecture based on that

• It seems like the integers which have primitive roots are 2, 4, powers of odd primes, and 2 times powers
of odd primes

• As with many things in math, it’s best to start proving a conjecture with the easiest cases.

• The easiest cases are 2 and 4 and check, we’ve done those

• Next, we want to worry about powers of odd primes

• But there’s actually something a little easier we can start with: odd primes
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2.2 From the Top Down

• Goal: Every prime has a primitive root

• Rephrased: (Z / pZ)
× ∼= (Z / (p− 1)Z)

• Note: at every step of this proof ask: “Why do we need a prime?”

• Thm: Let p be prime and let d be a positive divisor of p−1. Then the number of incongruent integers
of order d modulo p is equal to ϕ(d).

• (Warm-up) Question: How does this imply our goal?

– If we show this, take d = p− 1 (positive divisor of p− 1)

– Conclusion is that there are ϕ(p− 1) integers of order p− 1

– But that’s ϕ(p− 1) primitive roots

– Since ϕ(p− 1) > 1, we have at least 1 primitive root

• Question: How does this fit into context that we already understand?

– Recall: we showed that if an integer n has a primitive root, then there are ϕ(ϕ(n)) primitive
roots.

– Taking n = p to be prime, this is ϕ(p− 1) primitive roots

– So this was a result of the form “if there is one primitive root, then there are ϕ(p − 1)” where
we’re about to show “there are ϕ(p− 1)”

– We’re taking a result that was conditional and with a different strategy, we’re going to show it
unconditionally

– But the original result was more general because it didn’t just apply to primes

– This is a lot like how math research operates: someone will prove “if A, then B” and someone
else will show that B always holds in certain cases (independent of A) and finally someone will
put a bunch of pieces together and classify exactly when B happens

• Partial proof of theorem:

– For each d | p− 1, let

Sd = #

{
n ∈

(
Z
/
pZ
)×

: ordp(n) = d

}
and let F (d) = #Sd

– Since the Sd are pairwise disjoint and every element of (Z / pZ)
×

lives in one Sd, we have(
Z
/
pZ
)×

=
⋃

d|p−1
d>0

Sd

and so

p− 1 = #
(
Z
/
pZ
)×

=
∑
d|p−1
d>0

F (d)

– But recall that p− 1 =
∑

d|p−1 ϕ(d), so now we have∑
d|p−1

ϕ(d) =
∑
d|p−1

F (d)

– If we can show that F (d) 6 ϕ(d) for all d | p− 1, then we will conclude that F (d) = ϕ(d)
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– Why?

∗ Example: p = 7.

∗ We just showed that ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6) = F (1) + F (2) + F (3) + F (6)

∗ If we know F (1) 6 ϕ(1), F (2) 6 ϕ(2), etc. then when we add them all up, the only way for
both sides to be equal would be if we actually had F (1) = ϕ(1), etc.

∗ Another way to see it is if we had F (2) < ϕ(2), then we would have
∑
F (d) <

∑
ϕ(d), which

we don’t

– Once we conclude that F (d) = ϕ(d), we have that the number of elements in (Z / pZ)
×

of order
d is equal to ϕ(d)

• Question: how do we show that F (d) 6 ϕ(d)?

• Let’s think about what it means to be an element of order d

• This means that ad ≡ 1 mod p AND that ax 6≡ 1 mod p when x < d

• Thinking about ad ≡ 1 mod p for a second, notice that ad ≡ 1 mod p if and only if a is a “root mod
p” of xd − 1

• I.e. ad − 1 ≡ 0 mod p

• So we’re trying to count certain roots of xd − 1 mod p

• We’ve looked at polynomials mod p before

• In particular, we tried to do things like solve x2 − 5 ≡ 0 mod 7 before

• We also looked at x2− 5 mod 14 (by breaking it up and using Sun-Tsu), but right now we’re working
with a prime modulus

2.3 Detour: Polynomials mod p

• Recall our new goal: When d | p− 1, there are no more than ϕ(d) elements of (Z / pZ)
×

of order d

• Each element of order d is a root of xd − 1

• Question: how many roots of xd − 1 mod p are there?

• Warm-up: how many roots of xp−1 − 1 mod p are there?

• Answer: by FLT, we have p− 1 roots

• But maybe we still don’t know the answer to the first question, so let’s go somewhere a little more
familiar

• Question: how many real roots does xd − 1 have?

• Question: how many complex roots does xd − 1 have?

• Most importantly, we use the degree of the polynomial as a good indicator of how many roots it could
have

• Thm: (Lagrange) Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial with a0, . . . , an ∈ Z
and degree at least 1. Then f(x) has at most n incongruent roots mod p

• First note that we are using the fact that p is prime here! Recall that x2 − 4 has four roots mod 15.

• Proof: Not super critical, can skip if no time. Uses induction on degree and the fact that linear
polynomials have roots mod p

– We can assume that an 6≡ 0 mod p
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– Induct on the degree:

– n = 1 comes from the fact that a1 is invertible mod p

– Now suppose that polynomials of degree 6 n− 1 have 6 degree roots

– Assume by contradiction that there is a polynomial, f(x) = anx
n + · · · + a1x + a0 of degree n

with n+ 1 distinct roots mod p

– Write those roots as c0, . . . , cn

– Then

f(x)− f(c0) = an(xn − cn0 ) + an−1(xn−1 − cn−10 ) + · · ·+ a1(x− c0)

= an(x− c0)(xn−1 + xn−2c0 + · · ·+ xcn−20 + cn−10 ) + an−1(x− c0)(xn−2 + xn−3c0 + · · ·+ xcn−30 + cn−20 ) + · · ·+ a1(x− c0)

= (x− c0)g(x)

– For some polynomial g(x) with degree 6 n− 1

– But notice that
0 ≡ f(ci) ≡ (ci − c0)g(ci) mod p

and dividing by ci − c0 gives that ci is a root of g(x)

– But now g(x) has at least n roots and degree 6 n− 1, contradiction

• Question: where did we use the fact that p was prime in this proof?

• From here, we can now say something about the polynomial xd − 1 mod p when d | p− 1

• (This is the type of polynomial where we wanted to count its roots)

• Thm: Let p be prime and let d be a divisor of p − 1. Then xd − 1 has exactly d incongruent roots
mod p

• Proof:

– Since d | p− 1, there exists e ∈ Z so that de = p− 1

– Then
xp−1 − 1 = (xd − 1)(xd(e−1) + xd(e−2) + · · ·+ xd + 1) = (xd − 1)g(x)

– We already know that xp−1 has exactly p− 1 distinct roots

– We know that g(x) has at most d(e− 1) = p− 1− d roots

– But this means that xd − 1 has to take up the rest of the slack, giving xd − 1 at least (p − 1) −
(p− 1− d) = d roots

– Since xd − 1 has at most d roots, we’re done

2.4 Return to the proof

• Recall that for d | p− 1 we had F (d) equal to the number of elements of (Z / pZ)
×

of order d

• We wanted to show that F (d) 6 ϕ(d) because that would imply F (d) = ϕ(d)

• Lemma: F (d) 6 ϕ(d)

• Proof:

– If F (d) = 0, then we certainly have F (d) 6 ϕ(d)

– Otherwise F (d) > 1 and we have that there exists an element of order d

– Say a ∈ (Z / pZ)
×

has order d
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– Then the integers a, a2, a3, . . . , ad are incongruent mod p because if not, then ai ≡ aj mod p with
1 6 i < j 6 d, so 1 ≡ aj−i mod p, implying that ordp(a) 6 j − i 6 d− 1 < d contradiction

– Moreover, each of those powers of a is a root of xd − 1 mod p because

(ai)d − 1 ≡ (ad)i − 1 ≡ 0 mod p

– Since xd − 1 has exactly d roots mod p and since a, a2, . . . , ad gives d roots mod p, every root of
xd is congruent to a power of a

– Since every element of order d is a root of xd − 1, every element of order d is a power of a

– But recall that

ordp(aj) =
d

(j, d)

so that the only powers of a which have order d are the ones with (j, d) = 1

– Hence, there are ϕ(d) powers of a that have order d

– Hence, there are ϕ(d) elements of (Z / pZ)
×

that have order d

• Recall: this tells us that there are ϕ(p− 1) primitive roots mod p!

3 The Existence of Primitive Roots

• We’re not going to do much with this section

• It’s worth stating the main result though:

• Thm: There is a primitive root modulo n if and only if one of the following holds true:

1. n = 2

2. n = 4

3. n = pt for an odd prime p and t > 1

4. n = 2pt for an odd prime p and t > 1

• How do you get there?

• First prove that primitive roots mod p are connected to primitive roots mod p2: if r is a primitive root
mod p, then all but one element of

(
Z / p2Z

)
which are congruent to r mod p are primitive roots mod

p2

• As a corollary, if r is a primitive root mod p, then either r or r + p is a primitive root mod p2

• Next, prove that if r is a primitive root mod p2, then it’s a primitive root mod pk for k > 2

• Next, show that all of the above categories have primitive roots: only need to check the 2pt case and
it’s possible to check that if r is a primitive root mod pt and r is odd, then r is a primitive root mod
2pt. If r is a primitive root mod pt and r is even, then r + pt is a primitive root mod pt.

• For the other direction, check powers of 2 and show that 2k when k > 3 does not have a primitive root
because the order of every element is a divisor of ϕ(2k)/2

• Finally, show that if there’s a primitive root mod n, then n has to have one of the above forms

• Note that this gives us an algorithm for finding primitive roots:

– Find a primitive root, r mod p (say, using the week 6 group work problem)

– Lift that primitive root to a primitive root mod p2 (either r or r + p will work) and you get that
it’s a primitive root mod pt for free
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– If n = pt you’re done

– If n = 2pt and your primitive root is odd, you’re done

– If n = 2pt and your primitive root is even, add pt and you’re done

• Ex: Find a primitive root modulo 2 · 175

– First, find a primitive root modulo 17

– We showed that 3 is a primitive root modulo 17 previously by checking the power of 2 powers of
3 (31, 32, 34, 38) and seeing that they were not 1 mod 17, so 3 must be a primitive root modulo 17

– Next, check to see if 3 is a primitive root modulo 172

– ϕ(172) = 17 · 16

– We need to check some extra powers of 3 mod 172: 316, 317, 32·17, 34·17, and 38·17

– Once we see that these are not 1 mod 172, we conclude that 3 is a primitive root mod 172

– We now get for free that 3 is a primitive root mod 175

– Since 3 is odd, 3 is still a primitive root mod 2 · 175

4 Discrete Logarithms and Index Arithmetic

4.1 Intro to definition

• In the real numbers, what does logb(a) mean?

• Here are some questions to help you determine what logb(a) should mean when working in modular
arithmetic.

– The following questions work modulo 9:

∗ What should log2(2) be?

∗ What should log2(4) be?

∗ What should log2(8) be?

∗ What should log2(7) be?

∗ Can you come up with another reasonable answer to the previous question? What about a
third answer? A fourth?

∗ What should log5(1) be?

∗ What should log5(5) be?

∗ What should log5(7) be?

∗ What should log7(7) be?

∗ What should log7(4) be?

∗ What should log7(5) be?

∗ Why doesn’t log7(a) make sense as a function defined on (Z / 9Z)×?

– Does there exist a base b so that logb is a well-defined function on (Z / 8Z)×? If yes, give a table
of values of logb(n) for n ∈ (Z / 8Z)×. If no, why not?

4.2 Definition

• Let r be a primitive root modulo m. Then for any a ∈ (Z /mZ)×, there exists unique x so that
1 6 x 6 ϕ(m) and rx ≡ a mod m. Define the index base r (or discrete logarithm base r) of a modulo
m to be x. Denote this by indr(a).

• We like to reserve log for real numbers, so we stick with ind here.
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• Since ind is essentially a log and since we explored properties in the beginning-of-the-section questions,
you probably find the following proposition plausible

• Thm: Let m be a positive integer with primitive root r and let a, b ∈ (Z /mZ)
×

. Then

1. indr(1) ≡ 0 mod ϕ(m)

2. indr(ab) ≡ indr(a) + indr(b) mod ϕ(m)

3. indr(ak) ≡ k indr(a) mod ϕ(m)

• Proof:

– indr(1) = ϕ(m)

– rindr(ab) ≡ ab mod m

– Also, rindr(a)+indr(b) ≡ rindr(a) · rindr(b) ≡ ab mod m

– Since we then have that rindr(ab) ≡ rindr(a)+indr(b) mod m, we conclude that indr(ab) ≡ indr(a)+
indr(b) mod ϕ(m).

• Ex: Find all solutions of the congrunce 7x3 ≡ 4 mod 9

ind2(7x3) ≡ ind2(2) mod 6

ind2(7) + 3 ind2(x) ≡ 1 mod 6

4 + 3 ind2(x) ≡ 1 mod 6

3 ind2(x) ≡ 3 mod 6

ind2(x) ≡ 1 mod 2

ind2(x) ≡ 1, 3, 5 mod 6

x ≡ 21, 23, 25 mod 9

4.3 Applications

• In general, computing indr(a) is HARD

• Hard enough that the security of the ElGamal cryptosystem and Diffie-Hellman public key exchange
rely on the difficulty of the problem

4.4 Power Residues

• More generally than our last example, we can talk about solving equations of the form xk ≡ a mod m

• Before we try to solve this, it’s worth asking: is there a solution?

• For which a do there exist solutions to xk ≡ a mod m?

• We’ve already asked this for k = 2: this was the study of quadratic residues

• Def: Let m and k be positive integers and a ∈ (Z /mZ)×. Then a is a kth power residue of m of there

exists an x ∈ (Z /mZ)× so that xk ≡ a mod m

• Recall Euler’s Criterion: a is a quadratic residue mod p (prime) if and only if

a
p−1
2 ≡ 1 mod p

• Thm: Let m be a positive integer with a primitive root. If k is a positive integer and a ∈ (Z / nZ)
×

,
then a is a kth power residue of m if and only if

aϕ(m)/(k,ϕ(m)) ≡ 1 mod m

If there are solutions, then there are exactly (k, ϕ(m)) solutions.
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• Proof:

– Let r be a primitive root of m.

– There is a solution to xk ≡ a mod m if and only if there is a solution to k indr(x) ≡ indr(a)
mod ϕ(m)

– Now this is a linear equation in the “variable” indr(x)

– It has solutions if and only if (k, ϕ(m)) | indr(a) and if it does, we get (k, ϕ(m)) solutions

– But (k, ϕ(m)) | indr(a) if and only if (ϕ(m)/(k, ϕ(m))) indr(a) ≡ 0 mod ϕ(m) which occurs if
and only if aϕ(m)/(k,ϕ(m)) ≡ 1 mod m

– We’re done

• Ex: Is 5 a sixth power modulo 17? If so, how many solutions are there to x6 ≡ 5 mod 17?

– To do this, compute 516/(6,16) mod 17

– So we want 58 mod 17

– Successively squaring gives

52 ≡ 25 ≡ 8 mod 17

54 ≡ 64 ≡ 13 mod 17

58 ≡ 169 ≡ 16 mod 17

– So 5 is not a 6th power residue

• Let p be an odd prime. Show that every element of (Z / pZ)
×

is a pth power residue

– Approach 1: Need to check a
p−1

(p,p−1) mod p, but oh yeah, that’s 1 by FLT, so check

– Approach 2: ap ≡ a mod p, so a is a pth power residue.

5 Primality Tests Using Orders

6 Universal Exponents

6.1 Intro

• We’ve now seen a couple of things related to exponents and we can add a third complicating factor:
universal exponents

• Here are some facts:

– If a ∈ (Z /mZ)
×

, then aϕ(m) ≡ 1 mod m

– Every a ∈ (Z /mZ)
×

has an order: that is, a least value of x so that ax ≡ 1 mod m. The order
of a is a divisor of ϕ(m)

– Sometimes, m has a primitive root: i.e. a base r so that the smallest positive x with rx ≡ 1
mod m is x = ϕ(m).

– Sometimes, m doesn’t have a primitive root.

• Let’s visually explore what it means to have a primitive root:

x 1 2 3 4 5 6
1x 1 1 1 1 1 1
2x 2 4 8 7 5 1
4x 4 7 1 4 7 1
5x 5 7 8 4 2 1
7x 7 4 1 7 4 1
8x 8 1 8 1 8 1
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x 1 2 3 4
1x 1 1 1 1
3x 3 1 3 1
5x 5 1 5 1
7x 5 1 5 1

• 9 has a primitive root, meaning that “the first time a column has all 1s is when you get to column
ϕ(9)”

• 8 does not have a primitive root. It’s not obvious that this is true, but this is the same as saying “the
first time a column has all 1s is before you get to column ϕ(8).”

• In general, what is “the first column where you get all 1s?”

• Note that you get all 1s in column ϕ(m) by Euler’s Theorem

• Hence, by the well-ordering principle, there is a first column where you get all 1s.

• Def: Let m be a positive integer. A universal exponent of m is a positive integer U so that aU ≡ 1

mod m for every a ∈ (Z /mZ)
×

• Ex: 4 is a universal exponent of 5

• Ex: 4 is a universal exponent of 10

• Ex: ϕ(m) is a universal exponent of m

• Ex: m = 600 = 23 · 3 · 52

– Since ϕ(m) = 4 ·2 ·4 ·5 = 160, we know that for any a ∈ (Z / 200Z)
×

, we have a160 ≡ 1 mod 200.

– We can do better though

– Note that aϕ(8) ≡ 1 mod 8 and for any multiple of ϕ(8), too

– Also aϕ(3) ≡ 1 mod 3 and for any multiple of ϕ(3) too

– Finally, aϕ(25) ≡ 1 mod 25 and for any multiple of ϕ(25) too

– So if we could find a number U that is a multiple of 4, 2, and 20, then we would have aU ≡ 1
mod 8, 3, 25 and by Sun-Tsu, aU ≡ 1 mod 600

– We could take U = 4 · 2 · 20 = 160, but that seems silly

– Let’s take U = lcm(4, 2, 20) = 20. We now know that a20 ≡ 1 mod 600

– That’s a far cry better

– But maybe we can do better still?

– Because we know that a2 ≡ 1 mod 8 for all a ∈ (Z / 8Z)
×

.

– So we can actually take U = lcm(2, 2, 20) = 20

– Okay, so it didn’t work that time, but it was worth a try.

• More generally, we want to find the minimal universal exponent modulo n. Denote this with λ(n)

• Question: When is aU ≡ 1 mod n for all a ∈ n?

• If n = pe11 · · · p
eg
g , then this happens if and only if aU ≡ 1 mod peii for all a and i.

• Ex: Show that if n has a primitive root, then λ(n) = ϕ(n).

• As a result, λ(pt) = ϕ(pt) when p is an odd prime

• Result from section 9.3 that we didn’t really cover λ(2t) = 2t−2 when t > 3
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• Thm: Suppose that n ∈ Z with n > 1. Factor n into primes as n = 2e0pe11 · · · p
eg
g where p1, . . . , pg

are distinct odd primes, e0 > 0, and e1, . . . , eg > 1. Then the minimal universal exponent modulo n is
λ(n) = lcm(λ(2e0), ϕ(pe11 ), . . . , ϕ(p

eg
g )). Moreover, there exists an a ∈ Z so that ordn(a) = λ(n).

• “Proof:”

– Define M = lcm(λ(2e0), ϕ(pe11 ), . . . , ϕ(p
eg
g ))

– Note that because M is a multiple of ϕ(peii ), we have bM ≡ 1 mod peii for all b and i

– Hence, by Sun Tsu’s theorem, bM ≡ 1 mod n for all b

– So M is a universal exponent

– To show that M is the least universal exponent, we find an a ∈ Z with order M

– First, find a primitive root ri mod peii for each p1, . . . , pg

– Using Sun Tsu’s theorem, solve the system

a ≡ 5 mod 2e0

a ≡ r1 mod pe11
...a ≡ rg mod pegg

– Show that if aN ≡ 1 mod n, then λ(peii ) | N for 0 6 i 6 g

– Hence M | N
– So the order of a must be M .

– Also any universal exponent is a multiple of N

– Hence, M is the minimal universal exponent.

• Remember those problems at the very beginning of 347 that were like “show that n5 − n is divisible
by 5”?

• Ex: Show that any integer n not divisible by 2, 3, or 5 has n12 − 1 divisible by 180.

– A universal exponent for 180 = 22 · 32 · 5 is lcm(λ(4), λ(9), λ(5)) = lcm(2, 6, 4) = 12

– Hence any n ∈ (Z / 180Z)
×

satisfies n12 ≡ 1 mod 180, i.e. n12 − 1 is divisible by 180.
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