
Math 348 Homework 2 Spring 2022

1. Suppose that n > 2 and c1, . . . , cϕ(n) is a reduced residue system modulo n. Show that

c1 + c2 + · · ·+ cϕ(n) ≡ 0 mod n

For each 1 6 i 6 ϕ(n), the integer ci is relatively prime to n. Hence, −ci is also relatively prime to n and
since c1, . . . , cϕ(n) is a reduced residue system modulo n, there must exist a j with 1 6 j 6 ϕ(n) so that
cj ≡ −ci mod n. Note that we cannot have j = i since if we did, we would have 2ci ≡ 0 mod n imply-
ing that 2 ≡ 0 mod n since ci is relatively prime to the modulus n. This is a contradiction since n > 2.

Therefore, for each 1 6 i 6 ϕ(n), there exists a j 6= i so that ci + cj ≡ 0 mod n. Without loss

of generality, we can assume that c2k+1 + c2k+2 ≡ 0 mod n for each 0 6 k 6 ϕ(n)
2 − 1. But this

immediately implies that

(c1 + c2) + (c3 + c4) + · · ·+ (cϕ(n)−1 + cϕ(n)) ≡ 0 mod n
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2. Suppose that a and b are relatively prime integers greater than 1. Show that aϕ(b) + bϕ(a) ≡ 1 mod ab

Since (a, b) = 1, Euler’s theorem implies that aϕ(b) ≡ 1 mod b and bϕ(a) ≡ 1 mod a. Moreover,
aϕ(b) ≡ 0 mod a and bϕ(a) ≡ 0 mod b. Hence, aϕ(b) + bϕ(a) ≡ 1 mod a and aϕ(b) + bϕ(a) ≡ 1 mod b.
Since a and b are relatively prime, we can apply Sun-Tsu’s theorem to acquire

aϕ(b) + bϕ(a) ≡ 1 mod ab
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3. Find all positive integers n such that ϕ(n) = 12. Be sure to prove that you have found all solutions.

Let n = pe11 · · · p
eg
g where p1, . . . , pg are distinct primes and e1, . . . , eg > 1. Suppose further that

ϕ(n) = 12. Then we can conclude that

(p1 − 1)pe1−11 · · · (pg − 1)peg−1g = ϕ(n) = 12

As a consequence, if for any i, ei > 1, then we must have pi | 12. This means that the only prime
divisors of n which can have exponents greater than 1 are 2 and 3. Now suppose that some pi is nei-
ther 2, nor 3. Then pi−1 must divide 12 so pi = 5, pi = 7, or pi = 13. We now have the following cases.

Case 1: The largest prime factor of n is 13.

Without loss of generality, we may assume that p1 = 13. We have already shown that 13 cannot have
an exponent greater than 1, so we must have e1 = 1. In this case, we conclude that

12 = ϕ(13pe22 · · · pegg ) = 12ϕ(pe22 · · · pegg )

and so 1 = ϕ(pe22 · · · p
eg
g ). The only integers with ϕ(k) = 1 however are k = 1 and k = 2, so we conclude

that the only possibilities in this case are n = 13 or n = 26.

Case 2: The largest prime factor of n is 7.

Without loss of generality, p1 = 7. We have already seen that 7 cannot have an exponent larger than
1, so e1 = 1 and 12 = ϕ(7 ·pe22 · · · p

eg
g ) = 6ϕ(pe22 · · · p

eg
g ). As a consequence, 2 = ϕ(pe22 · · · p

eg
g ). The only

integers k with ϕ(k) = 2 are k = 3, k = 4, and k = 6, so the only possible values of n are 21, 28, and 42.

Case 3: The largest prime factor of n is 5.

Without loss of generality, p1 = 5. We have already seen that 5 cannot have an exponent larger than
1, so e1 = 1 and 12 = ϕ(5 · pe22 · · · p

eg
g ) = 4 · ϕ(pe22 · · · p

eg
g ). As a consequence, 3 = ϕ(pe22 · · · p

eg
g ). Since

ϕ(k) is always even for every integer k, there are no possible values of n in this case.

Case 4: The only prime factors of n are 2 and 3.

In this case, n = 2a · 3b for some a, b > 0, so

12 = ϕ(n) = 2a−1 · 2 · 3b−1 = 2a · 3b−1

Hence, a = b = 2 so n = 36.

These are all of the possible cases, so the only values of n with ϕ(n) = 12 are 13, 21, 26, 28, 36, and 42.
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4. For which integers n > 2 does ϕ(n) | n?

Suppose that ϕ(n) | n and write n = pe11 · · · p
eg
g for distinct primes p1, . . . , pg and e1, . . . , eg > 0. In

particular, order the pi so that p1 < p2 < · · · < pg. Moreover, under the assumption that ϕ(n) | n, we
find that

pe1−11 pe2−22 · · · pe3−1g (p1 − 1) · · · (pg − 1) | pe11 · · · pegg
and so in fact,

(p1 − 1) · · · (pg − 1) | p1 · · · pg

In particular, p1−1 | p1 · · · pg. If p1−1 > 1, this is a contradiction because p1−1 < p1 < p2 < · · · < pg.
Hence, p1 − 1 = 1, so p1 = 2.

If 2 is the only prime factor of n, then we note that

ϕ(n) = ϕ(2e1) = 2e1−1 | 2e1 = n

as desired.

Now suppose that n has more than 1 prime factor. We have already shown that it must be the case that
p1 = 1. Now p2−1 | 2·p2 · · · pg. Since p2−1 < p2 < p3 < · · · < pg, we must have p2−1 | 2 and so p2 = 3.

If 2 and 3 are the only prime factors of n, then we note that

ϕ(n) = 2e1−1 · 2 · 3e2−1 = 2e1 · 3e2−1 | 2e1 · 3e2 = n

as desired.

Now suppose for sake of contradiction that n has more than 2 prime factors. We have already shown
that it must be the case that p1 = 2 and p2 = 3. Now, p3−1 | 2·3·p3 · · · pg. Since p3−1 < p3 < · · · < pg,
we must have p3 − 1 | 6, i.e. p3 = 7. However, this is impossible because

ϕ(2e13e27e3pe44 · · · pegg ) = 2e1−1 · 2 · 3e2−1 · 6 · 7e3−1 · ϕ(pe44 · · · pegg ) = 2e1+1 · 3e2 · 7e3−1 · ϕ(pe44 · · · pegg )

and so ϕ(n) is divisible by 2e1+1, but n is not. Hence, n cannot have more than 2 prime factors.

Therefore, the only n for which ϕ(n) | n are the integers n = 2a3b where a > 1 and b > 0.
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5. (Extra Credit—and don’t use the internet for this one) Prove that lim
n→∞

ϕ(n) =∞

Recall that for a sequence {an}n∈N ⊆ R, the limit lim
n→∞

an =∞ if for every M > 0, there exists N ∈ N
so that for all n > n, we have an > M .

We first claim that for any M ∈ Z>0, there are only finitely many n > 2 with ϕ(n) = M . To see this,
suppose that n = pe11 · · · p

eg
g for distinct primes p1, . . . , pg and e1, . . . , eg > 1. Then

M = ϕ(n) = pe1−11 · · · peg−1g (p1 − 1) · · · (pg − 1)

In particular, for any 1 6 i 6 g, pi − 1 | M and so pi 6 M + 1. There are only finitely many primes
less than M so any n with ϕ(n) = M can have only finitely many prime factors.

Moreover, for any 1 6 i 6 g, pei−1i | M , so pei−1i 6 M . Taking logs on both sides and using the fact
that pi > 2, we find that

ei − 1 6
logM

log pi
6

logM

log 2

so there are only finitely many possible values of the exponent ei. Since there are finitely many possible
prime factors of any n with ϕ(n) = M and there are finitely many possible exponents on those prime
factors, there can be only finitely many values of n which satisfy ϕ(n) = M .

Now we show that lim
n→∞

ϕ(n) =∞. Fix an M > 0 and let M ′ = dMe. Then set

S = {n > 0 : ϕ(n) 6 M ′}

Observe that

S =

M ′⋃
k=1

{n > 0 : ϕ(n) = k}

Since we now see that S is the finite union of finite sets, it follows that S is finite. In particular, S has
a maximal element, say N . Now observe that by the definition of S, if n > N , then ϕ(n) > M ′ > M .
But this is exactly what it means for lim

n→∞
ϕ(n) =∞.
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