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1 Prime Numbers

1.1 Basic Facts

• Def: A prime number is a positive integer which has exactly two positive divisors. Every other integer
greater than 1 is called composite

– Note that 1 isn’t prime because it only has one positive divisor

• Of course, numbers like 2, 3, and 5 are prime, where numbers like 4, 6, and 9 are composite

• Why do we care about primes?

– They’re another way to think about how to generate the integers (though we don’t quite have the
tools to see this yet)

– Some cryptography relies on factoring numbers into primes

– Often, when proving a question about natural numbers, you can reduce to a prime case

• What are some good things to know about primes?

• Thm: Every integer greater than 1 has a prime divisor

– Suppose n > 1

– Consider the set S = {d > 1 : d | n}
– Since n ∈ S, the well-ordering principle tells us that S has a least element, say p

– If p is not prime, p has at least three positive divisors: 1, p, and something else, say d.

– Then we know that d | p and p | n, so d | n.

– d is positive and not 1, so d > 1, so d ∈ S
– Additionally, d < p because d is a divisor of p and not equal to p.

– This contradicts the minimality of p.

– Therefore, p is prime

• Thm: There are infinitely many primes

– Suppose not.

– Let P = {p ∈ N : p is prime}
– Since P is a finite set, let k =

∏
p∈P p

– Note that the number k + 1 must have a prime divisor by our previous lemma.

– But if p ∈ P , p - k because k is one more than a multiple of p

– Hence, P is not the set of all primes, which is a contradiction

• Alternatively...Claim: for every n > 1, if p is a prime divisor of n! + 1, then p > n
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– By contradiction, suppose p 6 n.

– Then p | n!

– By assumption, p | n! + 1

– Hence, p | (n! + 1)− n! = 1, which is a contradiction

• Note that we have shown that for any n, there exists a prime p > n, so there are infinitely many primes

• There are lots of proofs that there are infinitely many primes! We’ll see if come across some more in
this class

• Thm: If n is composite, then n has a prime factor 6
√
n

– Since n is composite, we can write n = ab where 1 < a 6 b < n

– If a >
√
n, we would have b >

√
n and hence, n = ab > n

– Contradiction, so a 6
√
n

• Sieve of Eratosthenes activity

1.2 Prime Distribution

• A major question in number theory is: where do the primes live?

– Are they close together or far apart?

– How many primes end in 1? 3? 5? 7?

– How many primes are of the form 4k + 1? 4k + 3?

– Are there infinitely many twin primes?

– Erdös-Turán Conjecture: the set of primes contains arbitrarily long arithmetic progressions, i.e.
for any n, there exists a prime p and a positive integer c for which p, p+ c, p+ 2c, . . . , p+ nc are
all prime

– Are there infinitely many primes of the form n2 + 1?

– Given a number n, how far might you have to look to definitely find a prime?

• Some partial answers:

• Def: The prime counting function is π(x) defined to be the number of prime numbers less than x.

• Thm: (Prime Number Theorem): The probability that a randomly selected positive integer less than
x is prime is ≈ 1

log(x)

• What does this say about π(x)?

– We can use this probability statement to compute the expected number of primes less than x

– The expected number of primes less than x is Li(x) :=
∫ x
2

1
log(t) dt

– Integrating by parts gives

Li(x) =
x

log(x)
− 2

log(2)
+

∫ x

2

1

log2(t)
dt

– Check that x
log(x) is the main term by noting that Li(x) → ∞ (in comparison with

∫
1
x dx) and

noting that Li(x)∫ x
2

1
log2(t)

dt
→∞

– Hence, π(x) ≈ x
log(x)

• What do we formally mean by ≈? Well, limx→∞
π(x)

( x
log(x) )

= 1
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• Note that this allows us to conclude that there are infinitely many primes, since x
log(x) →∞

• Thm: Suppose that a and b are relatively prime positive integers. Then the arithmetic progression
xn = an+ b has infinitely many primes.

• On the question of “how far do you have to look to find a prime,” we know that between n and n! + 1,
there must be a prime.

• Better bounds exist:

• Thm: Bertrand-Chebyshev Theorem: For any n ∈ N, there exists a prime p with n < p < 2n

• There are other related questions, like

• Legendre’s conjecture: For each n, is there a prime p with n2 < p < (n+ 1)2?

2 Greatest Common Divisors and their Properties

2.1 Some Theory

• We previously defined the greatest common divisor of two integers a and b to be the maximal element
of the set of their common divisors

• We’ll explore some useful facts about them here

• Thm: Let a, b, c ∈ Z. Then (a, b) = (a+ bc, b)

– Suppose d | (a, b)
– Then d | a and d | b, so d | a+ bc.

– Since d | a+ bc and d | b, d | (a+ bc, b)

– i.e. every divisor of (a, b) is a divisor of (a+ bc, b)

– Now suppose f | (a+ bc, b).

– Since f | a+ bc, there exists d ∈ Z with fd = a+ bc, so a = fd− bc.
– But since f | b, we find that f | a
– Hence, f | (a, b)
– i.e. every divisor of (a, b) is a divisor of (a+ bc, b)

– But if the divisors of (a, b) are the same as the divisors of (a+ bc, b), then they must be the same
number up to sign

– Since they are both positive, they are both equal

• We’ve seen before that if d | a, b, then d | ma+ nb for any m,n

• In particular, (a, b) | ma+ nb

• Ex: a = 9, b = 15. We know that (9, 15) = 3 divides both 9 and 15 and hence, divides any 9m+ 15n.

• However, we can actually find an m and an n so that 9m+ 15n | 3, too: 9 · (−3) + 15 · 2 = 3

• Can we always do this?

• Thm: If a, b ∈ Z with either a 6= 0 or b 6= 0, there exist m,n ∈ Z with ma+ nb = (a, b).

– Consider the set S = {ma+ nb > 0 : m,n ∈ Z}
– S 6= ∅, so S has a least element, say d = ma+ nb

– We claim that d = (a, b)
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– To do this we need: d | a and d | b
– We’ll show that d | a using Euclidean division:

– Write a = dq + r for q, r ∈ Z, 0 6 r < d

– We want to show that r = 0

– So we have r = a− dq = a− (ma+ nb)q = (1−mq)a− nqb, so r is a linear combination of a and
b.

– Using 0 6 r < d and the fact that d is the least positive linear combination of a and b, we find
r = 0.

– Hence, d | a
– Similarly, d | b
– Additionally, (a, b) | ma+ nb = d.

– So d is a positive divisor of a and b. Moreover, any other divisor of a and b divides d.

– So d = (a, b)

• This is nice, but how do we find m and n? It’s not as simple as you might think...

2.2 Examples

• Ex: Show that if k ∈ Z>0, then 3k + 2 and 5k + 3 are relatively prime

– 5(3k + 2)− 3(5k + 3) = 1

• Ex: Show that if n ∈ Z>0, then (n+ 1, n2 − n+ 1) = 1 or 3

(n+ 1, n2 − n+ 1) = (n+ 1, n2 − n+ 1− n(n+ 1))

= (n+ 1,−2n+ 1)

= (n+ 1,−2n+ 1 + 2(n+ 1))

= (n+ 1, 3)

which is either 1 or 3. Note how we used polynomial long division here...

• Def: Integers a1, . . . , an are mutually relatively prime if (a1, . . . , an) = 1. The integers are pairwise
relatively prime if (ai, aj) = 1 when i 6= j.

• Ex: Find four integers which are mutually relatively prime so that any three of them are not mutually
relatively prime

– 2 · 3 · 5, 2 · 3 · 7, 2 · 5 · 7, 3 · 5 · 7

3 The Euclidean Algorithm

3.1 The Basic Algorithm

• Last time, we saw an example of why the theorem (a, b) = (a+ nb, b) was useful:

(36, 122) = (36, 122− 108 = 14) = (36− 28 = 8, 14) = (8, 6) = (2, 6) = (2, 0) = 2

• Off hand, it might seem like this is slower for numbers like 36 and 122 which are only divisible by small
primes (and you’ve probably memorized the prime factorization anyways).

• You’re probably right, but for larger numbers, this algorithm runs much faster.

• But we want to formalize this process
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• Note that we’re using division with remainder every time: we’re taking the gcd of the smaller thing
with the remainder of the division of the bigger thing by the smaller thing.

• More precisely we have the following

• Let a > b > 0 and do the following divisions (we can let r0 = a and r1 = b):

a = bq1 + r2

b = r2q2 + r3

r2 = r3q3 + r4

...

rn−1 = rnqn + 0

• Then (a, b) = rn

3.2 Some Examples

• Ex: Compute (60, 34):

60 = 34 · 1 + 26

34 = 26 · 1 + 8

26 = 8 · 3 + 2

8 = 2 · 4 + 0

• So (60, 34) = 2

• Ex: Compute (105, 44):

105 = 44 · 2 + 17

44 = 17 · 2 + 10

17 = 10 · 1 + 7

10 = 7 · 1 + 3

7 = 3 · 2 + 1

3 = 1 · 3 + 0

• So (105, 44) = 1

• Ex: Let Fn+1 and Fn+2 be successive terms in the Fibonacci sequence with n > 1. Show that the
Euclidean algorithm takes exactly n divisions to compute (Fn+1, Fn+2) = 1

Fn+2 = Fn+1 + Fn

Fn+1 = Fn + Fn−1

...F4 + F3 + F2F3 = F2 · 2

• So F2 = 1 is the gcd and there are exactly n+ 2− 3 + 1 = n divisions

3.3 Why does it work?

• Why does this work?

• Two questions: why does it finish and why is rn = (a, b)?
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• For the second question (a, b) = (a − q1b, b) = (r2, b) = (r2, b − r2q2) = (r2, r3) = (r2 − q3r3, r3) =
(r4, r3) = · · · = (rn−1, rn) = (rn, 0) = rn

• How do we know we eventually get to some remainder of 0?

• Well, b > r2 > r3 > . . . > 0, so some remainder had better be 0 eventually.

3.4 Using the Euclidean algorithm for linear combinations

• Ex: Write 1 as a linear combination of 105 and 44

105 = 44 · 2 + 17

44 = 17 · 2 + 10

17 = 10 · 1 + 7

10 = 7 · 1 + 3

7 = 3 · 2 + 1

3 = 1 · 3 + 0

Rewriting gives...

1 = 7− 3 · 2
= 7− (10− 7) · 2
= 7 · 3− 10 · 2
= (17− 10 · 1) · 3− 10 · 2
= 17 · 3− 10 · 5
= 17 · 3− (44− 17 · 2) · 5
= 17 · 13− 44 · 5
= (105− 44 · 2) · 13− 44 · 5
= 105 · 13− 44 · 31

• Hm. Not something you’d expect. But not something unexpected either.

• This requires us to traverse the Euclidean algorithm twice though.

• Can we do better?

• Sure, by tracking some extra information

3.5 The Extended Euclidean Algorithm

• Thm: Let a, b ∈ Z with a > b > 1. Then (a, b) = sna + tnb where sn and tn are defined by s0 = 1,
s1 = 0, t0 = 0, t1 = 1 and

sj = sj−2 − qj−1sj−1 tj = tj−2 − qj−1tj−1

• What are sj and tj supposed to represent?

• They represent the coefficients in rj = sja+ tjb

• This leads to the proof:

– By strong induction on j: r0 = a = s0a+ t0b and r1 = b = s1a+ s2b

– Then suppose that rj = sja+ tjb for all j < k
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– Then we have

rk = rk−2 − rk−1qk−1
= (sk−2a+ tk−2b)− (sk−1a+ tk−1b)qk−1

= (sk−2 − sk−1qk−1)a+ (tk−2 − tk−1qk−1)b

= ska+ tkb

– Ta da!

• Ex: Express (102, 222) as a linear combination of 102 and 222.

222 = 102 · 2 + 18 s2 = 1− 2 · 0 t2 = 0− 2 · 1
102 = 18 · 5 + 12 s3 = 0− 5 · 1 t3 = 1− 5 · (−2)

18 = 12 · 1 + 6 s4 = 1− 1 · (−5) t4 = −2− 1 · 11

12 = 6 · 2 + 0

4 The Fundamental Theorem of Arithmetic

4.1 The Theorem

• Lemma: Suppose (a, b) = 1 and a | bc. Then a | c

• Proof:

– Since (a, b) = 1, there exist x, y ∈ Z with ax+ by = 1

– Multiply through by c to get axc+ byc = c

– The LHS is divisible by a because it is a linear combination of a and bc

– Hence, the RHS is divisible by a, so a | c

• Lemma: Suppose p | a1 · · · an for integers a1, . . . , an. Then p | ai for some 1 6 i 6 n.

• Proof:

– By induction on n

– n = 1 is trivial

– Now we assume that if p | b1 · · · bn−1, then p | bi for some 1 6 i 6 n− 1

– Suppose p | a1 · · · an
– Either (p, a1 · · · an−1) = 1 or p.

– If (p, a1 · · · an−1) = 1, then p | an by the previous lemma

– If (p, a1 · · · an−1) = p, then p | a1 · · · an−1 and by induction hypothesis, p | ai for some 1 6 i 6 n−1

• Thm: Every nonzero integer n can be written as a product n = (−1)b
∏g
i=1 p

vi
i where b = 0 or 1, each

pi is prime, and each vi ∈ Z>0. This expression is unique up to reordering the pi.

• Proof:

– We start by showing that every integer greater than 1 has a prime factorization.

– By the well-ordering principle, there must be a least positive n > 1 without a prime factorization.

– But we’ve shown (previously) that every integer greater than 1 has a prime factor, so n has a
prime factor, p.

– If n
p = 1 then n = p is a prime factorization of n, contradiction.

– If n
p > 1, then it has a prime factorization
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– But then n has a prime factorization: n = p · prime-factorization-of-np

– This contradicts the fact that n has no prime factorization

– Therefore, every integer greater than 1 has a prime factorization

– To see that this factorization is unique, suppose that we can write n = p1p2 · · · pn = q1q2 · · · qm
– Then p1 | q1q2 · · · qm, so p1 | qi for some i.

– WLOG, i = 1. Then p1 = q1

– So p2 · · · pn = q2 · · · qm and apply the same process to find that p2 = q2, . . . , pn = qn.

– If m > n, we’d have 1 = qn+1 · · · qm and that doesn’t work, so m = n

– Hence, our two prime factorizations were the same!

– This gives uniqueness

– The only integers left are 1 = (−1)0, 1 = (−1)1, and any negative integer, which you get of course
by factoring |n| and then multiplying by (−1)1.

4.2 Factorization in Other Contexts

• In what other number systems can we factor things?

• Let Q[x] be the set of polynomials with coefficients in Q.

• We can factor polynomials there, but notice that we lose some uniqueness: x = 2 · x2
• What about Q?

• Note that first, we can write any element of Q as r
s where r, s ∈ Z, s > 0, and (r, s) = 1

• Then if r 6= 0, we can factor r and s into primes and write r
s =

∏g
i=1 p

vi
i where the vi are either positive

or negative

• This factorization is somehow a special feature of Q however

• It comes from the fact that Q is the set of fractions of Z

• A set like R has no meaningful way to factor its elements

• There’s nothing like “primes” that show up in the context of R

• This is because you can always take a real number x and do something silly with it like write x = π · xπ ,
so there aren’t any numbers that “don’t factor”

• C is pretty similar: there’s no good analogue of factoring

• But maybe we end up with a good question based on our experiences so far: in any context in which
factoring makes sense, will we have unique factorization?

4.3 Unique Factorization in Other Contexts

• Let’s look at the set Z[
√
−5] := {a+ b

√
−5 | a, b ∈ Z}

• Note that this set has all of the usual integers, −10, 2, 3, 5, etc. and also some extra numbers 1 +
√
−5,

1−
√
−5, etc

• Just like in the integers, we can add, subtract, and multiply elements of Z[
√
−5] and stay in Z[

√
−5]

• Note that (a1 + b1
√
−5) + (a2 + b2

√
−5) = (a1 + a2) + (b1 + b2)

√
−5

• Also, (a1 + b1
√
−5)(a2 + b2

√
−5) = a1a2 − 5b1b2 + (a1b2 + a2b1)

√
−5
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• Given these two operations, we call Z[
√
−5] a ring and it’s a special type of ring with the following

property: if xy = 0, then x = 0 or y = 0

• Not every ring has this property: think about matrices

• Are there any numbers that play the role of primes in Z[
√
−5]?

• Sure: we say that a number x ∈ Z[
√
−5] is irreducible if any time you write x = yz for y, z ∈ Z[

√
−5],

y = ±1 or z = ±1.

• Here are a few numbers that you can check are irreducible: 2, 3, 1 +
√
−5, 1−

√
−5

• But note that there’s something weird that happens 6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5)

• So Z[
√
−5] has factorization and the equivalent of primes, but it doesn’t have unique factorization.

Weird!!!

• What about Z[
√
d] for other d?

• Z[i] has unique factorization!

• Some of the “traditional” primes lose their primality though: 5 = (1 + 2i)(1− 2i).

• Note that this has something to do with 5 = 12 + 22.

• Question: which numbers can be written as the sum of two squares? Three squares? Four squares?
More squares?

4.4 An Example or Two

• Recall Dirichlet’s theorem on primes in arithmetic progressions: fixing a, d ∈ Z with (a, d) = 1, there
are infinitely many primes of the form a+ kd

• Ex: Show that there are infinitely many primes of the form 3 + 4k

• Proof:

– Suppose there are only finitely many primes of this form: q0 = 3, q1, . . . , qr.

– Define Q = 4q1 · · · qr + 3

– Since Q is of the form 4k+3, it must have some prime p of the form p = 4k+3 in its factorization
(if all of the primes are of the form 4k + 1, then Q would be of the form 4k + 1)

– Let’s check to see if p = qi for some 0 6 i 6 r

– Could p = q0?

– No: if p = 3 | Q, then 3 | Q − 3 = 4q1 · · · qr, which can’t happen because none of the primes are
divisible by 3.

– Could p = qi for some i > 1?

– No: if p = qi, then p | Q− 4q1 · · · qr = 3, but p - 3

– Hence, p is of the form 4k + 3 but is not in the list q0, . . . , qr.

– Contradiction. Therefore, infinitely many primes of the form 4k + 3.

• Ex: Factor the Riemann zeta function (only if time...)
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5 Linear Diophantine Equations

5.1 Intro

• Mathematicians often use the phrase “Diophantine Equations” to refer to

– polynomial equations

– any number of variables

– with integer coefficients

– where a “solution” means a solution in integers

• For instance, one might want to fix an integer n and find the solutions to x2 − ny2 = 1 (this is called
Pell’s equation because Euler mistakenly thought that a person named John Pell found the general
method to find solutions to this equation)

5.2 Linear Diophantine Equations

• We’re going to focus on solving linear Diophantine equations to start because these are the easiest.

• Diophantine equations can get pretty tough at the quadratic level, too...

5.2.1 In One Variable

• These are pretty easy (but worth starting at): They look like ax = b for integers a and b.

• Q: When does this have solutions in the integers?

• A: When a | b

• In that case, it has a unique solution, namely b
a .

• So this equation has either 0 or 1 solution

5.2.2 In Two Variables

• This is where things get a little trickier.

• Consider an equation of the form ax+ by = n for integers a, b, n

• Where does an equation like this show up?

• Ex: Can you make 83 cents of change out of 6 cent coins and 15 cent coins?

• How can we examine this question?

• Option 1: geometrically

– 6x+ 15y = 83 forms a line in the xy-plane. Does it pass through any lattice points?

– Drawing it out shows that there aren’t any solutions in the first quadrant

• Option 2: algebraically

– Observe that the LHS is a linear combination of the numbers 6 and 15.

– In particular, the LHS is divisible by (6, 15) = 3

– But the RHS isn’t divisible by 3, so there can’t be any integer solutions!

• The algebraic approach (in this case) gives us a bit more insight into how we can change the problem
to yield a solution
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• Ex: Find an integer solution to 6x+ 15y = 3

– We know the Euclidean algorithm will let us do this, but we can also do it by inspection

– 6 · 2 + 15 · (−1) = 3 for instance.

• Ex: Find an integer solution to 6x+ 15y = 21

– Note that now that we’ve found 6·2+15·(−1) = 3, we can multiply by 7 to get 6·14+15·(−7) = 3

– But there’s another obvious solution: 6 · 1 + 15 · 1 = 21

• Ex: How many integer solutions are there to 6x+ 15y = 3?

– We know 6 · (−2) + 15 · 1 = 3

– Note that if I add 5k to the −2 and subtract 2k from the 1, the 6 · 5k and the 15 · 2k cancel out:
i.e. 6 · (−2 + 5k) + 15 · (1− 2k) = 3 is true for every integer k

– This gives infinitely many solutions!

– Maybe there’s a question of “where did the 5 and 2 come from?”

– Let’s start there.

– Any solution to 6x+ 15y = 3 can be re-written as 6 · (−2 + a) + 15 · (1− b) = 3.

– Simplifying gives 6a− 15b = 0

– One more step gives 2a = 5b and since 2 and 5 are relatively prime, we must have that a is a
multiple of 5 and b is a multiple of 2

– Moreover, if a = 5k, then we have 10k = 5b so b = 2k.

– Hence, we find that every solution can be rewritten as 6 · (−2 + 5k) + 15 · (1− 2k) = 3 for some
integer k

– We still haven’t answered the question, so let’s go a bit more abstract

• Ex: Classify the integer solutions to ax+ by = (a, b)

– You know that there exists some solution x0, y0

– Any other solution can be written as a(x0 + n) + b(y0 +m) = (a, b) for some integers m and n

– Rewriting gives an+ bm = 0, i.e. an = −bm
– When we got to this step previously, we had 6n = 15m, which wasn’t useful because n didn’t

have to be a multiple of 15 for this to work. Instead, we divided by the gcd to get further

– So now a
(a,b) · n = − b

(a,b) ·m

– Since a
(a,b) and b

(a,b) are relatively prime, we can conclude that n must be a multiple of b
(a,b) , say

n = b
(a,b)k.

– But then a
(a,b)k = −m

– So we have a(x0 + b
(a,b)k) + b(y0 − a

(a,b)k) = (a, b) classifies all the solutions

• Ex: Classify the integer solutions to ax+ by = c

– If (a, b) - c, there are no solutions and we are done.

– If (a, b) | c, then by the same reasoning as above, find one solution (x0, y0) and every other solution
will look like x0 + b

(a,b)k and y0 − a
(a,b)k

• Ex: Find all solutions to 6x+ 15y = 21

• Using x0 = −14 and y0 = 7, we can write all solutions as x = −14 + 5k and y = 7− 2k

• Note that the solution x = 1 and y = 1 has k = 3
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5.2.3 More than two variables

• Now consider the linear diophantine equation a1x1 + a2x2 + · · ·+ anxn = c

• If (a1, a2, . . . , an) - c, then there are no solutions

• If (a1, a2, · · · , an) | c, then we claim that there are infinitely many solutions

• We do this by induction on n

• If n = 2, we have already found that there are infinitely many solutions.

• Now suppose that any linear Diophantine equation of less than n variables has infinitely many solutions

• Let’s focus on the first two variables briefly.

• We know that the set of linear combinations of a1 and a2 is the same as the set of multiples of (a1, a2)

• This implies that for any y ∈ Z, there exists x1, x2 ∈ Z with a1x1 + a2x2 = (a1, a2)y

• So every solution to (a1, a2)y + a3x3 + · · · anxn = c gives a solution to a1x1 + a2x2 + · · ·+ anxn = c

• But ((a1, a2), a3, . . . , an) = (a1, . . . , an) | c, so by the induction hypothesis (a1, a2)y+a3x3+· · · anxn = c
has infinitely many solutions

• Hence, a1x1 + a2x2 + · · ·+ anxn = c has infinitely many solutions

• How do you find them?

• Generalize the previous algorithm.

• Not really worth it to spend lecture time on that.
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