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0.1 Intro

• Recall that a Diophantine equation is a polynomial equation where the only coefficients are integers

• We learned last term that for linear Diophantine equations: ax + by = c has a solution in integers x
and y if and only if (a, b) | c

• We also learned how to solve them when there are solutions (the Euclidean algorithm)

• What about other Diophantine equations?

– Can we classify when there are solutions?

– Can we solve them?

• The answer to the second question (and hence the first) is: no

• Hilbert’s 10th problem asks the following: “Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise a process according to which it
can be determined by a finite number of operations whether the equation is solvable in rational integers”

• See https://logic.pdmi.ras.ru/~yumat/Julia/

• This of course means that it’s a substantial and difficult problem.

• It took about 70 years to give a complete proof that no such algorithm exists.

• Proof passes through mathematical logic and essentially shows that every set which is recursively
enumerable is Diophantine.

• Since some recursively enumerable sets are noncomputable, some Diophantine sets are noncomputable

• So the best we can hope to do is solve or classify solutions to some Diophantine equations

1 Pythagorean Triples

1.1 Intro

• Turns out that we’re pretty familiar with a nonlinear Diophantine equation: a2 + b2 = c2

• We even know some solutions: (3, 4, 5), (5, 12, 13), (6, 8, 10)

• How many solutions are there?

• Can we classify all of the solutions?

• Def: A Pythagorean triple is a triple (a, b, c) of positive integers so that a2 + b2 = c2

• Note: here we use (a, b, c) for the triple, not for the gcd...context should make it clear which we mean.
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1.2 A Reduction

• We first claim that there are infinitely many Pythagorean triples: Since 32 + 42 = 52, note that for any
integer k, (3k)2 + (4k)2 = (5k)2.

• Hence, a = 3k, b = 4k, and c = 5k gives a solution

• Note that k = 2 was how we got (6, 8, 10)

• But also note that (5, 12, 13) doesn’t come from one of these values of k

• So okay, now a = 5k, b = 12k, and c = 13k gives an infinite family of solutions

• Are there any that we didn’t get yet?

• It would be nice to associate a word to “minimal” Pythagorean triple

• Def: A Pythagorean triple is primitive if x, y and z are relatively prime

• We have already seen that any primitive Pythagorean triple can be multiplied by an integer to yield a
nonprimitive Pythagorean triple

• On the other hand, we claim that a nonprimitive Pythagorean triple is a multiple of a primitive
Pythagorean triple.

• Proof:

– Suppose that (a, b, c) are integers satisfying gcd(a, b, c) = d and a2 + b2 = c2

– Then there exist integers a′, b′, c′ so that a = a′d, b = b′d, c = c′d

– As a consequence gcd(a′, b′, c′) = 1

– Moreover, a2 + b2 = c2 implies
(
a
d

)2
+
(
b
d

)2
=
(
c
d

)2
, i.e. a′2 + b′2 = c′2

– So (a, b, c) is a multiple of the primitive Pythagorean triple (a′, b′, c′)

• So we can now revise our questions from before: how many primitive Pythagorean triples are there?

1.3 Infinitely Many!

• Thm: If m,n are relatively prime positive integers with m > n and m 6≡ n mod 2, then x = m2−n2,
y = 2mn, and z = m2 + n2 is a primitive Pythagorean triple

• Corollary: there are infinitely many Pythagorean triples

• Proof:

– Need to check two things: x2 + y2 = z2 and gcd(x, y, z) = 1

– For the first:

x2 + y2 = (m2 − n2)2 + (2mn)2

= m4 − 2m2n2 + n4 + 4m2n2

= (m2 + n2)2

= z2

– Great, so we have a Pythagorean triple.

– If (x, y, z) is not primitive, there exists a prime p so that p | x, y, z
– Since m 6≡ n mod 2 and x = m2 − n2, x ≡ 1 mod 2, so p 6= 2

– Since p | x and p | z, p | x + z = 2m2 and p | z − x = 2n2 so p | m,n.
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– But this contradicts the fact that (m,n) = 1.

– Hence, (x, y, z) is primitive.

• Moreover, the converse is true: every primitive Pythagorean triple has this form.

• Given (x, y, z), take r = (z + x)/2 and s = (z − x)/2.

• Prove that r and s are squares and let m =
√
r and n =

√
s.

• Then prove that m and n have the desired quantities.

1.4 Geometric Perspective

• Of course, Pythagorean triples have something to do with geometry

• So shouldn’t we be able to talk to Pythagorean triples by talking about triangles or something?

• Answer: kinda sorta

• Picking a Pythagorean triple (a, b, c) is the same as picking a point in the xy-plane (a, b) so that its
distance from the origin is an integer

• Draw picture

• But it’s easier if we look at where that line intersects the unit circle

• Where does that line intersect the unit circle?

• We make a vector (a, b) into a unit vector by dividing by its distance,
√
a2 + b2

• But because we picked a Pythagorean triple point, that distance is an integer c

• So our point on the unit circle is
(
a
c ,

b
c

)
• On the other hand, if we start with a rational point on the unit circle

(
p
q ,

r
s

)
, we can get a Pythagorean

triple by multiplying both sides of
(

p
q

)2
+
(
r
s

)2
= 1 by q2s2 to get (ps)2 + (rq)2 = (qs)2

• So what we find is that we have a bijection between

{rational points on unit circle in quadrant 1} ↔ {Pythagorean triples}

• Now that we’ve made this connection, we want to ask if it’s any easier to describe rational points on
the circle than it is to describe Pythagorean triples

• Let’s start with a rational point on the circle: (−1, 0)

• This may seem like an odd choice because this definitely isn’t going to yield anything close to a
Pythagorean triple, but it works because it’s far away from such points

• Note that if we start with any rational point (x, y) on the unit circle, then the slope of the line between
(−1, 0) and (x, y) is y

x+1 which is rational

• So rational points on the circle yield rational slope lines

• We claim that rational slope lines also yield rational points on the circle

• Check on your own: the line with slope t passing through the point (−1, 0) also intersects the circle at(
1−t2
1+t2 ,

2t
1+t2

)
• If t is rational, this yields a rational point.
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• What we’ve shown is that all rational points on the circle have the form
(

1−t2
1+t2 ,

2t
1+t2

)
where t is a

rational number

• What if we write t = n
m for positive integers n and m?

• Then some arithmetic yields the point
(

m2−n2

m2+n2 ,
2mn

m2+n2

)
• And the corresponding Pythagorean triple is (m2 − n2, 2mn,m2 + n2)

1.5 An Application to Teaching Calculus

• How is this kind of thing useful to non-number-theorists?

• Recall the arc length formula: the arc length of the curve given by y = f(x) between x = a and x = b
is ∫ b

a

√
1 + f ′(x)2 dx

• Let’s say that you’re teaching MATH 252 and you need to come up with a good example to illustrate
this formula for your students

• But you haven’t taught them trig sub yet because the book doesn’t cover things in that order

• So you would really really like it if you could have
√

1 + f ′(x)2 = g(x) for some rational function g(x)
that you can actually integrate

• Well that’s the same thing as saying that 1 + f ′(x)2 = g(x)2

• But you know how to rationally parametrize the circle because you took number theory: Rearranging
the formula (

1− x2

1 + x2

)2

+

(
2x

1 + x2

)2

= 1

into
(1− x2)2 + (2x)2 = (1 + x2)2

and then (
1− x2

2x

)2

+ 1 =

(
1 + x2

2x

)2

means that if you take f ′(x) = x2−1
2x , then you get g(x) = x2+1

2x

• Then f ′(x) = x
2 −

1
2x implies that you should start with f(x) = x2

4 −
1
2 log |x|

• So you ask your students to compute the arc length of x2

4 −
1
2 log |x| on the interval “whatever” and

then, ta-da!, the integral works out magically.

2 Fermat’s Last Theorem

3 Sums of Squares

3.1 Intro

• We previously looked at x2 + y2 = z2, i.e. “which squares are the sum of two other squares?”

• But why not generalize and just ask “which integers are the sum of two other squares?”

• I.e. for which n do there exist x, y ∈ Z so that x2 + y2 = n?
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• Note: prima facie, this is a question about additive number theory

• We’re asking about adding up squares to get a given number

• However, we can quickly turn it into a question about multiplicative number theory:

• Thm: If m and n are the sum of two squares, then mn is the sum of two squares.

• Pf:

– Suppose that m = a2 + b2 and n = c2 + d2

– Verify yourself that mn = (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2

• This converts our problem from an additive problem into (partially) a multiplicative problem

• Now that we know that “being a sum of squares” is a multiplicative problem, we can start by asking
“which primes are the sum of squares?”

• At least then, we’ll have a partial answer to “which integers are sums of squares” because we’ll be able
to take products of primes which are sums of squares

• E.g. we can easily check that 5 = 22 + 12 and 13 = 22 + 32 are sums of two squares. So all numbers of
the form 5n · 13m are sums of two squares

3.2 Primes as the Sum of Two Squares

• Thm: If p ≡ 3 mod 4 is prime, then p is not the sum of two squares

• Pf

– Sums of squares are always 0, 1, 2 mod 4, never 3

• The surprising thing is that the converse is also true

• Thm: If p ≡ 1, 2 mod 4 is prime, then p is the sum of two squares

• There are plenty of elementary proofs of this fact, but there are very few easy proofs.

• Due to lack of time, we’ll skip this proof.

3.3 The Classification of Integers as the Sum of Two Squares

• So now we know that products of primes ≡ 1 mod 4 can be written as the sum of two squares

• Is this all of the integers which can be written as the sum of two squares?

• No!

• Warm-up: find an integer which is not the product of primes ≡ 1 mod 4 and which is the sum of two
squares

• 9 works for a silly example and 18 = 32 + 32 works for a less silly example

• So what’s the classification?

• Thm: The positive integer n is the sum of two squares if and only if each prime factor ≡ 3 mod 4
occurs to an even power in the prime factorization of n

• Proof:

– First suppose that each prime factor ≡ 3 mod 4 appears to an even power in the prime factor-
ization
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– Then we can write n = t2u where every prime p | n with p ≡ 3 mod 4 has p | t
– Since u is a product of primes ≡ 1 mod 4, we can write u as the sum of two squares u = x2 + y2

– But then n = t2u = (tx)2 + (ty)2

– Where’s the lie?

– Okay, what if u = 1? Then u = 02 + 12 and everything works fine

– For the converse, suppose that n is the sum of two squares, n = x2 + y2 and that n = p2j+1r for
p - r

– Let (x, y) = d, a = x/d, b = y/d, and m = n/d2 so that (a, b) = 1 and a2 + b2 = m

– If pk is the largest power of p dividing d, then m is divisible by p2j−2k+1 and in particular, p | m
– p - a, b because if it divided a, then it would divide m− a2 = b2 and vice versa

– Hence, there exists z so that az ≡ b mod p (note the change of modulus)

– But now we have
0 ≡ m = a2 + b2 ≡ a2 + (az2) ≡ a2(1 + z2) mod p

– Since a2 is not divisible by p, we must have 1 + z2 ≡ 0 mod p, i.e. z2 ≡ −1 mod p

– Hence, −1 is a quadratic residue mod p

– Hence, p ≡ 1, 2 mod 4...contradiction

– Therefore, n is only divisible by even powers of primes ≡ 3 mod 4

3.4 More Squares

• Okay, sure now we know which integers can be written as the sum of two squares

• We can definitely write more numbers as a sum of three squares: e.g. 3 = 12 + 12 + 12

• Is it all of them?

• Nope: 7 can’t be written as a sum of three squares

• But 7 can be written as the sum of four squares: 7 = 22 + 12 + 12 + 12

• And if you keep searching, you’ll find that every positive integer you pick can be written as the sum
of four squares

• Thm: (Lagrange) Every positive integer can be written as the sum of four squares.

• This theorem begins similarly to the discussion on sums of two squares

• Thm: If m and n are each the sum of four squares, then mn is the sum of four squares

• This again follows from a weird algebraic identity.
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