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1 Wilson’s Theorem and Fermat’s Little Theorem

1.1 Intro

• Our goal is to get to quadratic reciprocity as soon as we can.

• Quadratic reciprocity essentially describes how to take square roots in modular arithmetic

• To get there, we need a couple of special congruences that we’re going to try to prove

1.2 Wilson’s Theorem

• In one of our infinitely many primes proofs earlier, we were looking at numbers of the form n! + 1

• We said they have to have a prime factor > n and we used that to say something like “since there’s a
prime > n for each n, there must be infinitely many primes”

• We didn’t talk about what prime factors those numbers have though.

• Let’s look at some selected examples

• 1! + 1 = 2 is div by 2

• 2! + 1 = 3 is div by 3

• 4! + 1 = 25 is div by 5

• 6! + 1 = 721 is div by 7

• Note that 3! + 1 = 7 is not div by 4 and 5! + 1 = 121 is not div by 6

• So it seems like when p is prime, (p− 1)! + 1 is div by p

• Thm: (Wilson): If p is prime, then (p− 1)! ≡ −1 mod p

• Proof:

– p = 2 is trivial, so assume p odd

– (p− 1)! = (p− 1)(p− 2) · · · 2 · 1
– Note that p− 1 ≡ −1 is its own inverse mod p

– Hence, if x < p− 1, then the inverse of x is also < p− 1

– Inverses come in distinct pairs: you saw this on the homework. If x is its own inverse, then x2 ≡ 1
mod p implying that x ≡ ±1 mod p

– So the numbers (p−2), . . . , 2 (of which there are p−3, i.e. evenly many) can be paired with their
inverses and you get a bunch of canceling

– Hence, (p− 1)! ≡ p− 1 ≡ −1 mod p
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• Fact: the converse is also true, though we won’t prove it

• If n > 2 has (n− 1)! ≡ −1 mod n, then n is prime.

• This can be used as a primality test, though an inefficient one since n! takes a while to compute

1.3 Fermat’s Little Theorem

• Something else you noticed on a previous homework: if a ∈ Z, then 3 | a3 − a

• Also 5 | a5 − a

• Easy enough to check that 2 | a2 − a

• Note that 4 - a4 − a if a = 2, so it is not always the case that an − a is divisible by n

• But it sure looks like if p is prime, then p | ap − a

• Thm: (Fermat?) If p is prime and a is an integer with p - a, then ap−1 ≡ 1 mod p

• Corollary: If a ∈ Z, then ap − a is div by p (check both cases)

• Proof:

– Consider the numbers of the form a, 2a, 3a, . . . , (p− 1)a

– Note that none are divisible by p

– Note that they are pairwise incongruent mod p

– Hence, {0, a, 2a, . . . , (p− 1)a} forms a complete set of residues mod p

– Now we have

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) mod p

ap−1(p− 1)! ≡ (p− 1)! mod p

ap−1 ≡ 1 mod p

Applications and Examples

• If p is prime and a ∈ Z, p - a, then ap−2 is an inverse of a mod p

• Ex: What is the remainder when 40! is divided by 41 · 43 = 1763?

– Here, we’re going to use Sun-Tsu’s Theorem in kind of a clever way

– First, we note that 40! ≡ −1 mod 41 by Wilson’s Theorem

– Next, 42! ≡ −1 mod 43 also by Wilson’s Theorem

– To get to 40!, we want to multiply by 42−1 and 41−1

– 42−1 is itself (−1) and since 41 ≡ −2 mod 43, we see that −22 is an inverse to 41 mod 43.

– Hence, 40! ≡ 42! · 42−1 · 41−1 ≡ (−1) · (−1) · (−22) ≡ −22 mod 43.

– Now we want to find an integer that is equivalent to −1 mod 41 and −22 mod 43

– Apply Sun-Tsu’s theorem to get x ≡ 1311 mod 1763

• Ex: Show that 30 | n9 − n for all positive integers n

– 30 = 2 · 3 · 5, so we want to look at n9 − n mod 2, 3, and 5 separately

– mod 2, we note that 09 − 0 ≡ 0 mod 2 and 19 − 1 ≡ 0 mod 2, so n9 − n is always divisible by 2

– mod 3, we note that n9 − n = (n3)3 − n ≡ n3 − n ≡ 0 mod 3
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– mod 5, we note that n9 − n = n5 · n4 − n ≡ n · n4 − n ≡ n5 − n ≡ 0 mod 5

– Hence, n9 − n ≡ 0 mod 2, 3, and 5 so by Sun-Tsu’s Theorem, it is also congruent to 0 mod 30.

• Ex: Compute the least positive residue of 3201 mod 11

– Since 310 ≡ 1 mod 11, we have 3201 = 3200 · 3 ≡ (310)20 · 3 ≡ 3 mod 11

• Ex: Compute the least positive residue of 54328 mod 101

– We know that 5100 ≡ 1 mod 101, so 54328 ≡ 528 mod 101

– Still hard to compute, but watch this:

52 ≡ 25 mod 101

54 ≡ 252 ≡ 625 ≡ 19 mod 101

58 ≡ 192 ≡ 361 ≡ 58 mod 101

516 ≡ 582 ≡ 3364 ≡ 31 mod 101

528 ≡ 516 · 58 · 54 ≡ 31 · 58 · 19 ≡ 24 mod 101

2 Euler’s Theorem

Refresher and Motivation

• Recall Fermat’s Little Theorem: If p prime, then for any a 6≡ 0 mod p, ap−1 ≡ 1 mod p.

• This is going to be our preferred statement of FLT this term.

• Fact (to be proven later in chapter 10): This theorem is unimprovable. For every prime p, there exists
a 6≡ 0 mod p so that ax 6≡ 1 mod p when 1 6 x < p− 1.

• Let’s talk about how to generalize it to a composite modulus.

• A good modulus to try is 9. If I have a 6≡ 0 mod 9, for what x will I have ax ≡ 1 mod 9?

– 1 to any power is 1 mod 9

– Powers of b mod 9:

x 1 2 3 4 5 6 7 8
0x 0 0 0 0 0 0 0 0
1x 1 1 1 1 1 1 1 1
2x 2 4 8 7 5 1 2 4
3x 3 0 0 0 0 0 0 0
4x 4 7 1 4 7 1 4 7
5x 5 7 8 4 2 1 5 7
6x 6 0 0 0 0 0 0 0
7x 7 4 1 7 4 1 7 4
8x 8 1 8 1 8 1 8 1

– Question 1: for which values of b is it possible for bx ≡ 1 mod 9?

– Answer 1: When (b, 9) = 1

– Question 2: When (b, 9) = 1, what powers of x yield bx ≡ 1 mod 9?

– Answer 2a: When (b, 9) = 1, b6 ≡ 1 mod 9.

– Answer 2b: When (b, 9) = 1, the smallest x so that bx ≡ 1 mod 9 has x | 6. This follows from
the cyclic nature of raising things to powers.

• Prop: Suppose that m > 0 and that bx ≡ 1 mod m for some x > 0. Then (b,m) = 1.

3



• Proof:

– Suppose there is a prime p with p | m and p | b.
– Then p | bx

– Also, p | m | bx − 1

– But then p | bx − (bx − 1) = 1, a contradiction

– Hence (b, p) = 1

• So if we want to generalize Fermat’s Little Theorem, we’d better focus solely on the b with (b,m) = 1.
Those are the ones that we can raise to a power and get 1.

• For example, when m = 9, we only care about base values

• Next question: why is b6 ≡ 1 mod 9 for all b with (b, 9) = 1?

• Where is the 6 coming from???

• To be seen...

The Euler Phi Function

• For any m, recall that we previously defined (Z /mZ) = {0, 1, . . . ,m − 1} as our standard, complete
set of residues

• But we also allowed ourselves the flexibility of other complete sets of residues for the purpose of proofs

• Now we want to define the subset of (Z /mZ) whose elements are relatively prime to m

• Def: Define (Z /mZ)
×

:= {b ∈ Z /mZ : (b,m) = 1}

• Ex: (Z / 9Z)
×

= {1, 2, 4, 5, 7, 8}

• Ex: (Z / 5Z)
×

= {1, 2, 3, 4}

• Ex: (Z / pZ)
×

= {1, 2, . . . , p− 1} when p is prime

• Def: Define ϕ(m) := # (Z /mZ)
×

• Note the use of phi and varphi

• Ex: ϕ(9) = 6, ϕ(5) = 4, ϕ(p) = p− 1 when p is prime

• Def: Most generally, define a reduced residue system modulo m to be a set S so that:

– |S| = ϕ(m)

– The elements of S are pairwise incongruent modulo m

– For each b ∈ S, (b,m) = 1

• Ex: {1, 2, 4, 5, 7, 8} is a reduced residue system modulo 9. It is not a reduced residue system modulo
10 (because 2 is not relatively prime to 10) nor is it is a reduced residue system modulo 7 (because
1 ≡ 8 mod 7 for instance)

• Ex: Another reduced residue system mod 9 is {10, 2, 4, 5, 7, 8}.

• More generally, we can replace any number in (Z /mZ)
×

with something it’s congruent to mod m:

• Ex: Suppose that m > 1, (a,m) = 1, and b ≡ a mod m. Show that (b,m) = 1.

– Suppose that p | m and p | b for some prime p.

– Since a ≡ b mod m, there exists k ∈ Z so that a− b = km, i.e. a = km + b.
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– But then p | b and p | m, so p | a.

– Contradiction, so no such p exists.

– Hence, (b,m) = 1

• Prop: If {r1, . . . , rϕ(m)} is a reduced residue system modulo m and (a,m) = 1, then {ar1, . . . , arϕ(m)}
is also a reduced residue system modulo m.

• Proof:

– Claim 1: ari is relatively prime to m.

– If p | m is prime, then p - a (since a and m are relatively prime) and p - ri (since ri and m are
relatively prime), so p - ari.

– So no prime factor of m is also a factor of ari. Hence (ari,m) = 1.

– Claim 2: ari ≡ arj mod m implies i = j.

– Divide both sides by a since (a,m) = 1.

– Note that ri ≡ rj mod m implies i = j since {r1, . . . , rϕ(m)} is a reduced residue system

– Claim 3: #{ar1, . . . , arϕ(m)} = ϕ(m)

– Trivial

• Thm: If m > 0 and a ∈ Z has (a,m) = 1, then aϕ(m) ≡ 1 mod m

• Proof:

– Let (Z /mZ)
×

= {r1, . . . , rϕ(m)}.
– Since a is relatively prime to m, S = {ar1, . . . , arϕ(m)} is a reduced residue system as well

– Hence, (ar1)(ar2)(ar3) . . . (arϕ(m)) ≡ r1r2 · · · rϕ(m) mod m

– Divide each side by all the ri (since they are relatively prime to m) and get aϕ(m) ≡ 1 mod m

Examples

• Ex: Find an inverse for 3 modulo 14

– Note that (Z / 14Z)
×

= {1, 3, 5, 9, 11, 13}, so ϕ(14) = 6

– Then 36 ≡ 1 mod 14, so 35 is an inverse for 3 mod 14.

– 32 ≡ 9 mod 14

– 34 ≡ 81 ≡ 11 mod 14

– 35 ≡ 33 ≡ 5 mod 14

– Of course, we could have done this by inspection, but this would be better for larger numbers

• Note how this compares to the naive algorithm for inverting a mod m. There are two possible naive
algorithms to check here:

1. Test every number 1, . . . ,m

2. Construct (Z /mZ)
×

and test each of the ϕ(m) members

• Compare to: compute ϕ(m) and then raise a to the ϕ(m)− 1

• Since raising to the ϕ(m)− 1 takes less than ϕ(m)− 1 multiplications (using repetetive squaring), and
ϕ(m) is easy to compute where (Z /mZ)

×
is hard to compute, this is quite efficient.

• Ex: Show that if a and m are positive integers with (a,m) = (a− 1,m) = 1, then 1 + a + a2 + · · ·+
aϕ(m)−1 ≡ 0 mod m

– Note that
(
1 + a + a2 + · · ·+ aϕ(m)−1

)
(a− 1) = aϕ(m) − 1 ≡ 0 mod m

– Since (a− 1) is relatively prime to m, it must be the case that m | 1 + a + · · ·+ aϕ(m)−1
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