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1 Matrix Addition and Scalar Multiplication

1.1 The Basics

• Big long-term goal: look at the matrix of a linear system and quickly decide how many solutions it
has.

• RREF takes a long time!!!

• To achieve this, we need to view the matrix as a whole, rather than a list of parts.

• The way we do this is by having matrix operations.

• We treat matrices similar to how we treat numbers.

• The first thing we’ll start with is matrix addition.

• We want this to be very similar to numerical addition and this is easy to accomplish.

• The way to add two matrices is to add their corresponding components.

Ex: (
1 2
3 4

)
+

(
0 −1
−3 −5

)
=

(
1 1
0 −1

)
• If two matrices are different sizes, they cannot be added!

• Now recall how multiplication of numbers works:

2 · 5 = 5 + 5 = 10

3 · 5 = 5 + 5 + 5 = 15

etc.

• Scalar multiplication of matrices works similarly:

2 ·
(
1 2
3 4

)
=

(
1 2
3 4

)
+

(
1 2
3 4

)
=

(
2 4
6 8

)
=

(
2 · 1 2 · 2
2 · 3 2 · 4

)
3 ·

(
1 2
3 4

)
=

(
1 2
3 4

)
+

(
1 2
3 4

)
+

(
1 2
3 4

)
=

(
3 6
9 12

)
=

(
3 · 1 3 · 2
3 · 3 3 · 4

)
etc.

• In general: to multiply a matrix by the number c, multiply each of its entries by c.

Ex:

−1.5

(
2 −1
1 4

)
=

(
−3 1.5
−1.5 −6

)
• Multiplying two matrices together is trickier and we’ll come back to it later.
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1.2 The Notation

• Describing addition and scalar multiplication isn’t so bad, but we’ll find it helpful later to have a little
notation.

Def: The dimension or size of a matrix is m× n if it has m rows and n columns.

• General mantra: rows by columns

Ex: Do a 3× 2 (A) and a 2× 3 matrix (B).

Def: The (i, j) entry in a matrix is the number in row i and column j (counting from the upper left entry).

Ex: Use one of the previous examples

• Common notation: the notation

A = (aij)1⩽i⩽m
1⩽j⩽n

means

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


• Let’s rewrite our addition rule using our new notation: Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn


and let c ∈ R. Then A+B = (aij + bij) and cA = (caij).

1.3 Some Algebraic Rules

• The algebraic rules for matrix addition and scalar multiplication work exactly like you expect them
to. Let A,B,C be m× n matrices and let k, p ∈ R.

– Addition is associative: (A+B) + C = A+ (B + C)

– Addition is commutative: A+B = B +A

– An additive identity exists: A+ 0 = A

– Additive inverses exist: there exists a matrix D so that A+D = 0.

– Scalar multiplication distributes: (k + p)A = kA+ pA and k(A+B) = kA+ kB

Ex: Find the matrix A if

2(A+

(
−1 0
1 2

)
) +

(
−2 −1
1 −3

)
=

(
1 2
3 4

)
.
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1.4 Revisiting Systems of Equations

• Recall the system of equations

−x1 + 2x2 − x4 = 1

x2 − x3 + 3x4 = 0

−x1 + 2x3 − 7x4 = 1

from last section.

• The solutions to this had the form

x1 = −1 + 2s− 7t

x2 = s− 3t

x3 = s

x4 = t

for s, t ∈ R.

• We can conveniently rewrite this in matrix notation and use our new matrix arithmetic rules:
x1

x2

x3

x4

 =


−1 + 2s− 7t

s− 3t
s
t

 =


−1
0
0
0

+


2s
s
s
0s

+


−7t
−3t
0t
t



=


−1
0
0
0

+ s


2
1
1
0

+ t


−7
−3
0
1


Def: A matrix with one row or one column is called a vector.

Def: Identify the basic solutions and the particular solution in the example above.

• Note: the particular solution is a solution to the system we started with.

• Note: the basic solutions are not solutions to the system we started with.

• Why are they called basic solutions? Because they are solutions to the homogenization of the system
we started with.

Def: Given vectors v1, . . . , vn (each with m rows), a linear combination of v1, . . . , vn is any vector of the
form

c1v1 + · · ·+ cnvn.

• Rephrasing something we already know: the solutions to a linear system of equations can be written
as a particular solution plus a linear combination of basic solutions.

Ex: A linear combination of (1, 1) and (2,−1) is 1(1, 1)+(−3)(2,−1) = (−5, 4). Another linear combination
of those vectors is −(1, 1) + 2(2,−1) = (3,−3).

Ex: Can (1, 2, 3) be written as a linear combination of the vectors (1, 0, 1), (1,−1, 0), and (5,−3, 2)?

– The RREF of the augmented matrix is[ccc|c]1 0 2 3
0 1 3 −2
0 0 0 0


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so for example,1
2
3

 = 3

1
0
1

− 2

 1
−1
0

+ 0

 5
−3
2

 = 1

1
0
1

− 5

 1
−1
0

+ 1

 5
−3
2

 .

Ex: Can (0, 0, 7) be written as a linear combination of (1, 0, 0) and (0, 1, 0)?

Ex: Express the system of linear equations

2x1 − 4x2 + x4 = 1

3x2 − x3 + x4 = −2

−x1 − x2 − x4 = −1

as a vector equation.

2 Transposition

• Another useful thing that we can do is reflect matrices.

• It’s not obvious why this is helpful, and we won’t really get into it in this course!

• But we’re doing it anyways.

Def: If A = (aij) is an m× n matrix, then the transpose of A is the n×m matrix AT = (aji).

• In other words, we reverse the roles of the rows and columns.

Ex: Do A, AT, and (AT)T to a nonsquare example.

• Two useful properties. Let A and B be m×N matrices and let r, s ∈ R.

– (AT)T = A

– (rA+ sB)T = rAT + sBT

Ex: Find A if

(2A+

(
1 −2
2 3

)
)T =

(
1 2
3 4

)
. (1)

Def: The matrix A is symmetric if A = AT. It is skew-symmetric if A = −AT.

Ex: One symmetric and one skew-symmetric.

Ex: square matrix that is neither, symmetric matrix from previous example is not skew-symmetric, skew-
symmetric matrix from the previous example is not symmetric.

3 Matrix Multiplication

3.1 How To and Why

• Things we can do: add matrices together, multiply numbers by matrices.

• A thing we would like to do: multiply matrices together.

• The plan: I tell you how, then I (partially) tell you why.
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Def: Given two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn) of the same size, the dot product of v and w
is

v · w = v1w1 + v2w2 + · · ·+ vnwn.

• Note: the dot product needs the vectors to be the same size.

• Note: the dot product of two vectors is a number.

Ex: (1, 2) · (−3, 4) = 5.

Ex: (1, 2) and (1, 2, 3) cannot be dotted together.

Def: Given an m×n matrix A = (aij) and an n× p matrix B = (bkℓ), the product of A and B is the m× p
matrix whose (i, j) entry is row i of A dotted with row j of B.

• Note the general rule (m× n)(n× p) = (m× p)

Ex: (
1 2 3
4 5 6

)−2 4 1 3
3 2 0 0
0 1 −2 2


Ex: (

1 2 3
4 5 6

)−1
2
0


Ex: (

1 2 3
4 5 6

)x
y
z

 =

(
x+ 2y + 3z
4x+ 5y + 6z

)

• Note that the system of equations

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

... =
...

am1x1 + · · ·+ amnxn = bm

can now be written as a11 · · · a1n
...

. . .
...

am1 · · · amn


x1

...
xn

 =

 b1
...
bm


• This will be a very helpful perspective for us soon: Solving the system requires finding all of the xi,
which we’ve helpfully separated. If we could divide by matrices...

• This is all I can say for now about why we multiply matrices this way.
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3.2 Matrix Multiplication Properties

Ex: Let A = ( 1 2
3 4 ) and let B = (−1 5 ). Find AB and BA.

• Observation: If AB makes sense, BA doesn’t have to.

Ex: Let A = ( 1 2
3 4 ) and let B = ( 0 1

1 0 ). Compute AB and BA.

• Observation: If AB makes sense, BA can make sense, but it does not have to equal AB.

TPS: If AB and BA both make sense, what can you say about their dimensions?

Def: A matrix is square if it has the same number of rows as columns.

Ex: Let A = ( 1 2
3 4 ) and let B = (−4 2

3 −1 ). Compute AB and BA.

• Observation: sometimes AB = BA.

• This is the one weird property. Everything else works out like you expect. Let A,B,C be matrices,
sized so that the following operations make sense. Let r, s ∈ R.

– Left distribution: A(rB + sC) = r(AB) + s(AC)

– Right distribution: (rA+ sB)C = r(AC) + s(BC)

– Associativity: (AB)C = A(BC).

Ex: Check that (AB)C = A(BC) with matrices A = ( 1 2
3 4 ), B = ( 0 1

1 0 ), and C = (−1 8
3 −4 ).

Def: The (main) diagonal of a matrix are all of the entries of the form (i, i).

Ex: The diagonal of (nonsquare matrix here) is ...

Def: The n× n identity matrix is In = . . ..

Ex: Compute ( 1 0
0 1 )(

1 2 3
4 5 6 ).

• Observation: if A is m× n, then ImA = A = AIn.

Ex: Compute ( 1 2
3 4 )(

0 0
0 0 ).

• Observation: A0 = 0A = 0.

Def: The zero matrix is any matrix all of whose entries are 0.

Ex: Let A = ( 1 2
3 4 ) and let B = (−4 2

3 −1 ). Compute (AB)T, ATBT, and BTAT.

4 Matrix Inverses

4.1 What They Are and Why They’re Useful

• Now that we know how to add, subtract, and multiply matrices, we want to think about how to divide
by matrices.

• This seems very useful!

• If we want to solve the linear systema11 · · · a1n
...

. . .
...

am1 · · · amn


x1

...
xn

 =

 b1
...
bm


, then it would be very helpful if we could “divide” by A!
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• Let’s recall some things about numeric division before we do matrix division:

– Division is a special case of multiplication: dividing by a is the same as multiplying by 1/a.

– 1/a has a special name: it’s called the inverse of a and we can write it as a−1.

– The inverse of a has a special property: a−1a = aa−1 = 1.

– Not every number has an inverse! 0 doesn’t have an inverse, for instance.

• Here’s our analogy:

• In takes the role of 1.

• Not every matrix is going to have an inverse.

• Nonsquare matrices: hopeless.

Def: An n× n matrix A is invertible if there is a matrix B so that

AB = BA = In.

The matrix B is called the inverse of A and it is denoted A−1.

Ex: Let A = ( 1 2
3 4 ). Observe that (

1 2
3 4

)(
−2 1
3/2 −1/2

)
=

(
1 0
0 1

)
and vice versa. We can conclude that A−1 = ( −2 1

3/2 −1/2 ).

• Fact: We didn’t actually need to check both AB and BA. If one of them is the identity, then so is the
other.

Ex: Solve the system of equations

x+ 2y = −2

3x+ 4y = 1

• Wow, inverses are great! At least, when they’re magically handed down to us from on high...

TPS: True or false? If A3 = ( 3 0
0 3 ), then A must be invertible.

4.2 How to Find Inverses

Ex: Find the inverse of A = ( 1 1
1 2 ).

– Start by writing out what this means: we want to find x, y, w, z with(
1 1
1 2

)(
x z
y w

)
=

(
1 0
0 1

)
.

– This is the same as finding x, y with A(x, y) = (1, 0) and A(z, w) = (0, 1).

– So we solve both of these systems the usual way: write the augmented matrices and put them in
RREF.

– Note that we could save time by doing it all at once: put (A|I2) into RREF.

Thm: (Matrix Inversion Algorithm) Suppose that A is an n× n matrix. Put the matrix (A|In) in RREF, so
that it has the form (R|B). If R = In, then A is invertible and B is the inverse of A. Otherwise, A is
not invertible.
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Ex: Find the inverse (if it exists) of ( 0 1
−1 4 ).

Ex: Find the inverse (if it exists) of ( 1 2
−3 −6 ).

• Reminder: check your work!!!

• Note that this means: A is invertible if and only if the RREF of A is the identity matrix.

Ex: Find the value(s) of k that make the following matrix invertible:(
1 −2
k 7

)

4.3 Properties of Inverses

• Here are a few useful properties. Let A and B be invertible, n× n matrices.

– (A−1)T = (AT)−1.

– (AB)−1 = B−1A−1

• Note why (AB)−1 is not equal to A−1B−1.

Ex: Recall that the inverse of ( 0 1
−1 4 ) is equal to ( 4 −1

1 0 ). Find the inverse of ( 0 3
−3 12 ).

• Observation: if k is not zero and A is invertible, then (kA)−1 = 1
kA

−1.

Ex: Solve the following matrix equation for A:((
1 1
1 2

)
A

)−1

=

(
1 2
3 4

)

5 Elementary Matrices

5.1 Representing Row Operations As Matrices

• Goal: for non-invertible matrices, we would like to have something kinda close to an inverse.

• We know that if A is a non-invertible matrix, we can’t get something like BA = In.

• But could we get something like BA = R where R is the RREF of A?

• Yes.

• To find this B, we’re going to look at encoding Gaussian elimination as a matrix.

Ex: Put the matrix

A =

0 1
1 0
0 0


in RREF. Next, compute 0 1 0

1 0 0
0 0 1

A

• Fact: given an m × n matrix A, you can swap rows i and j of A by multiplying A on the left by the
m×m identity matrix with rows i and j swapped.
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Ex: Put the matrix

A =

(
1 0 0
0 2 1

)
in RREF. Next, compute (

1 0
0 1

2

)
A

• Fact: given an m × n matrix A, you can multiply row i of A by the constant c if you multiply A on
the left by the m×m identity matrix which has row i multiplied by c.

Ex: Put the matrix

A =

1 2
0 1
0 0


in RREF. Next, compute 1 −2 0

0 1 0
0 0 1

A

• Fact: given an m × n matrix A, you can add c times row i to row j by multiplying A on the left by
the m×m identity matrix where c times row i was added to row j.

Def: A matrix is an elementary matrix if it was obtained from an identity matrix by applying a single row
operation.

Ex: Write down the elementary matrix which will add 5 times row 2 to row 3 of a 4× 7 matrix.

5.2 Inverses of Elementary Matrices

• Now that we have matrices for row operations, we will be able to represent sequences of row operations
as matrices.

• Before we do that, a quick word on the inverses of elementary matrices.

Ex: What row operation does the matrix ( 0 1
1 0 ) represent? What is its inverse?

• Observation: elementary matrices which swap two rows are their own inverses.

Ex: What row operation does the matrix ( 1/3 0
0 1

) represent? What is its inverse?

• Observation: the inverse of the elementary matrix which multiplies row i by c is the elementary matrix
which multiplies row i by 1/c.

Ex: What row operation does the matrix ( 1 0
5 1 ) represent? What is its inverse?

• Observation: the inverse of the elementary mtarix which adds c times row i to row j is the elementary
matrix which subtracts c times row i to row j.

• Big picture: the inverse of an elementary matrix is an elementary matrix
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5.3 Near Inverses

Ex: Let

A =

(
3 0 1
2 −1 0

)
and let R be the RREF of A. Find a matrix V so that R = V A.

• Slow (but reliable) way: Keep track of matrices, then multiply at the end.

• Shortcut (unreliable, unless you can remember exactly what this gets you): Write down augmented
matrix (A|I2) and row reduce to (R|V ).

• Note: if you want to find U so that A = UR, this process is helpful, but not sufficient.

Ex: Write ( 1 2
3 4 ) as a product of elementary matrices.
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