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1 Arithmetic

Def:

Def:
Ex:

Fact: 2 — 1 = 0 has two real solutions: +1

The equation 22 +1 = 0 has no real solutions-squaring a real number makes it nonnegative, and adding
1 means you’ll never get to zero.

But that’s really inconvenient.

22 4+ 1 = 0 should have two solutions! Just like 22 — 1 = 0.

So let’s make it happen.

Let’s make up a number called i. It’s a solution to z? + 1 = 0.

This means that i = —1.

What’s the other solution?

(—i)? =i? = —1, so —i is the other solution.

Now let’s make up a system of numbers that has all of our usual real numbers, together with 3.

We’d better be able to multiply ¢ with our usual numbers, so we’ll get numbers that look like 5z, —24,
i, etc.

We’d also better be able to add multiples of i to our usual numbers, so we’ll get numbers like 1 4+ 4,
3 —Ti, and V2 + mi.

This is exactly the set of numbers that we’ll look at:

A complex number is any number of the form a + bi where a,b € R. The set of complex numbers is

C={a+bi:a,beR}.

For a complex number a + bi, a is called the real part and b is called the imaginary part.

R[V2 — 7i] = V2 and I[V2 — 7i] = —.

Note: The imaginary part is a real number! It’s called the imaginary part because it is the (real)
number that is multiplied by 1.

I claim that we can add any two complex numbers together, and we’ll get another complex number:
(a+bi)+ (z+yi) = (a+z)+ (b+y)i.

E.g.
(74 2i) + (=14 3i) = 6+ 5i.



Ex:

Def:

Ex:

I claim that we can multiply any complex numbers together and we’ll get another complex number:

(a +bi)(x + yi) = ax + ayi + bri + byi® = (ax — by) + (ay + bx)i.

(74 2i)(—1+3i) = =7+ 6i — 2i + 6i* = —13 + 4i.

I claim that we can even divide complex numbers together, though this is not obvious, and requires an
intermediate tool.

The complex conjugate of a complex number a + bi is the number a — bi. We use the notation

a+bi=a—bi.

The notation w is read as “w bar.”

: The complex conjugate of v/2 + i is v/2 — 7i.
: The complex conjugate of 1 — 2¢ is 1 + 24.
: The complex conjugate of 3¢ = 0+ 3i is 0 — 3i = —3i.

: The complex conjugate of 7=7+0iis 7—0i = T7.

Now to division:

a+bi  a+bi xfyiiaxfayierm’fbyﬂ7(ax+by)+(bxfay)iiax+by bz —ay

r+yi T4y x—yi 2 4+ 12 22 + 12 22 + o2 Z'x2+y2'

7T+ 21
1433

Since all of our usual arithmetic properties hold, we can solve many equations just like you expect:

: Find the z € C so that

zZ+1

=3 - 2i.
z+1 !

We can also solve equations which involve the complex conjugation operation, though they may take
a little more effort.

To see this, we need a few facts about complex conjugation:

—ztw=Z+wW.
—ZW =72
-(Z)==z
- z/w =Z/w.

Find z € C so that z + 7 =3 — 2i + 3z.
— Equivalent to Z — i = 3 — 2i 4 3z.

le.z—-32=3—1.

Now write z = a + bi, so we get a — bi — 3(a + bi) =3 —i.
Hence, —2a = 3 and —4b = —1,ie. a=—-2/3 and b=1/4.



2

Complex Numbers as Vectors

There are some similarities between complex numbers and vectors.
Note that a complex number is defined by two real numbers.
So maybe we should look for similarities between C and R2.

Let’s compare addition operations:

(a+bi) + (z+yi) = (a+2) + (b+y)i and (Z) +(”3> — (Zi;)

Y

Wow, those are pretty similar. What about scalar multiplication (by some ¢ € R)?

) ‘ a ca
c(a+bi) = ca+ cbi and ¢ (b) = <cb> .

Again, this looks exactly the same.

They are similar enough that we can visualize C in the same way we visualize R? and everything we
know from R? will carry over to C.

We can draw the number a + bi as the point (a,b).
Draw some points.
Adding complex numbers is exactly like adding vectors.

We can port over some concepts from R2 to C, like length.

: The modulus/absolute value of the number a + bi is |a + bi| = va? + b2.

Recall the triangle inequality from R?: ||&7+ || < ||¥7]| + ||7]].
The same is true for C: |z + w| < |z| + |w|.

Here’s an interesting fact:
(a4 bi)(a+bi) = a* + b* = |a + bi|%.

A shorter way of writing this is 2z = |2|2.
Another concept we can bring from R? is that of angles.

Rather than thinking about angles between vectors, we’re going to focus on the angle a vector makes
with the positive real/horizontal axis.

: If T have a complex number with absolute value r and which makes an angle # with the positive real

axis, how do I express that in the form a + bi?
Draw the triangle, a = rcos# and b = rsin 6.

So the complex number with magnitude r and which makes angle 6 with the positive real axis is
rcosf + (rsinf)i = r(cos + isin ).

: The polar form of a complex number is z = r(cos 0 + isin6). 6 is called the argument. If —7 < 6§ < m,

then 6 is called the principal argument.

: What is the polar form of —1 —¢? What are the possible arguments of —1 —¢? What is the principal

argument of —1 — 47



3 Complex Numbers as Numbers

e Complex numbers are numbers, so we should be able to do usual number things with them!
e Let’s talk about exponents.

e For any z € C, we can easily talk about z" for any integer n.

e If n is positive, then z" =2z-2--- 2.

e If n is negative, then 2" =1/(z-z---2).

e What about z!>? This is much harder and we’ll come back to it.

e Another thing we can do is look at b* where b is a positive real number and any complex number.
e How could we possibly make sense of this?

e Let’s start with our favorite positive real number, e.

e We want to think about what e**% should be.

e Part of that answer is easy: e®1% = e . €% and we know what e® should be.

e ¢ is trickier though.

e If you've taken calculus, you might have seen the following three things:

2 3 n

=Lyt St
2 4 n,2n
T (=1)"y

COS(y)—l_E'FI—"'—Fi(Qn)! + ...
3 5 n,2n+1
oy (=)"y
Sn) =y =gt 5 G

and you probably said, “wow, those things sure look really similar.”

e It turns out they are: let’s look at e®¥.

e Woabh, it’s e? = cos(y) + isin(y).

e And this is how we make sense of e?¥ as a complex number.

e Now recall the polar form of a complex number: r(cos 6 + isin 0)

e We can rewrite this more simply as re®.
Ex: What is the polar form of —7? —7 = Te'".
Ex: Compute (1 +4)? in two different ways.

—(1+i)2=1+2i—1=2i.
— (1 +1)? = (V2e'™/*)2 = 2¢™/2 = 2(cos(1/2) + isin(n/2)) = 2i.

e Wow, the second way seems worse!
Ex: Compute (1 + )19 in two different ways.

— (144)1% = ... uh oh.

(14 0)100 = (/2¢1m/4)100 — 95025im — 950 (¢05(257) + i sin(257)) = —2°°,



Now that we’ve seen that polar form makes 2" easier for integers n, let’s return to z:

215 = 23/2 50 we had better learn some things about fractional powers.

Let’s start with fractions that look like z'/™ for a positive integer n.
Recall that this means “nth root.”

Problem: sometimes there are multiple nth roots.

1 has two square roots: +1.

—1 has two square roots: +i.

Let’s start with square roots: these are “easy enough” to do with brute force:

: Find every square root of 7 + 24i.

— We can do this by solving the equation 22 = 7 + 241.

— To do this, we can write z = a + bi and try to solve for a and b.

(a+bi)* =7+ 24i
= a® — b? + 2abi = 7 + 24i.

— From here, set the real and imaginary parts equal to one another:
— a? — b? =7 and 2ab = 24.

— Use the second equation to solve for b: b= 12/a.

— Substitute into the first equation:

2
a2—<12> =7=a*—144=7a>= a* —Ta® — 144 = 0.
a

— Now solve the quadratic in a?. Can substitute u = a? if you like.

, TEVI9+4-144
a“ = > =

—9,16.

— Recall that we want real numbers a which work, so a = +4.
— Now b = 12/a yields that the roots of 7+ 24i are 4 4+ 3¢ and —4 — 3i.

e This will always work for square roots.

e For cube roots on the other hand, this doesn’t work so well...

Ex:

Find every cube root of 1+ i.

— We're looking for numbers z so that 23 =1 + 1.

— Polar form is extremely helpful here.

— z=re",

— 141 =27/,

— We want to find r and 6 so that r3e3® = /2¢i7/4.

— So we’d better have: 13 = /2 = 21/2 and €31 = ¢in/4,
— The first one is easy to solve: r = 21/6,

— The second one is trickier than you think.

— The “obvious” answer is § = 7/12. You get this by solving 36 = /4.

5



But there are two less obvious answers as well: § = 37/4 and 0 = 177 /12.
— Why do these work? For § = 37 /4:

30 = /4 = cos(9m/4) + isin(9m/4) = cos(m/4) + isin(w/4) = /4.

For 6 = 17m/12: ‘ ‘ . ‘ ‘
6319 _ 61717\’/4 _ ez‘/r/462l7r _ 67,71'/4.

— Okay, it’s great to see how they work after the fact, but where did they come from?
— Our three 0 values of 7/12, 97/12, and 177/12 came from solving:

30 =m/4
30 =mw/4+2m
30 =m/4+ 4.

— In the end, we have three cube roots: 21/6¢i™/12 91/6¢9im/12 91/61Tim/12
e In general, there will be n nth roots of any complex number.
e To find the solutions to 2™ = w, you can:

— Write the components in polar form z = re and w = se’.

— Rewrite the equation 2z = w becomes "' = se'?.
— Solve r"* = s.
— Solve the n different equations:

nd = ¢

nf = o+ 2w

nd=p+Mn-—12r

Ex: Find the fourth roots of —i.
Write z = re®

— Write —i = €37/2.
4,410 _ 37/2.

— Solve r
— Sor=1.

To get our 0 values: solve

40 = 37/2

40 = 37 /2+ 27
40 = 37 /2 + 47
40 = 3w /2 + 67

— Now we have § = 37/8,77/8,117/8,157/8.

3im/8 e7i7r/8 1147w /8 15¢7/8
) ) .

Hence, our fourth roots of —i are e e ,and e



4 The Quadratic Formula

e It turns out that the quadratic formula works just as well for quadratics with complex coefficients as
for quadratics with real coefficients.

e [ want to update our understanding though, since there is a detail that is a little confusing.

e The solutions to
az? +bz+c=0
are
—b+ the two square roots of b — 4ac
2a '

Ex: Solve the equation 22 + (3 +2i)z +5+i = 0.
— Quadratic formula says:

(3 +2i) + the two square roots of (3 + 2i)% — 4(5 + i)
5 .

— So we’d better find the two square roots of

(342i)? —4(5+1) = (5+12i) — 20 — 45 = —15 + 8i.

Solve
(a4 bi)? = =15 + 8i.
Get a? — b? = —15 and 2ab = 8.
— Hence, b = 4/a.
— So

16
a’* — = =-15=a* 4+ 15a® — 16 = 0 = (a® + 16)(a”® — 1) = 0.
a

— Hence, a = £1.
— So our square roots are 1 + 44 and —1 — 4.

So our values of z are:

3241441 —3—2i4 (=1 —4i)

= 2 ’ 2
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