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1 Arithmetic

• Fact: x2 − 1 = 0 has two real solutions: ±1

• The equation x2+1 = 0 has no real solutions–squaring a real number makes it nonnegative, and adding
1 means you’ll never get to zero.

• But that’s really inconvenient.

• x2 + 1 = 0 should have two solutions! Just like x2 − 1 = 0.

• So let’s make it happen.

• Let’s make up a number called i. It’s a solution to x2 + 1 = 0.

• This means that i2 = −1.

• What’s the other solution?

• (−i)2 = i2 = −1, so −i is the other solution.

• Now let’s make up a system of numbers that has all of our usual real numbers, together with i.

• We’d better be able to multiply i with our usual numbers, so we’ll get numbers that look like 5i, −2i,
πi, etc.

• We’d also better be able to add multiples of i to our usual numbers, so we’ll get numbers like 1 + i,
3− 7i, and

√
2 + πi.

• This is exactly the set of numbers that we’ll look at:

Def: A complex number is any number of the form a+ bi where a, b ∈ R. The set of complex numbers is

C = {a+ bi : a, b ∈ R}.

Def: For a complex number a+ bi, a is called the real part and b is called the imaginary part.

Ex:
ℜ[
√
2− πi] =

√
2 and ℑ[

√
2− πi] = −π.

• Note: The imaginary part is a real number! It’s called the imaginary part because it is the (real)
number that is multiplied by i.

• I claim that we can add any two complex numbers together, and we’ll get another complex number:

(a+ bi) + (x+ yi) = (a+ x) + (b+ y)i.

• E.g.
(7 + 2i) + (−1 + 3i) = 6 + 5i.
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• I claim that we can multiply any complex numbers together and we’ll get another complex number:

(a+ bi)(x+ yi) = ax+ ayi+ bxi+ byi2 = (ax− by) + (ay + bx)i.

Ex:
(7 + 2i)(−1 + 3i) = −7 + 6i− 2i+ 6i2 = −13 + 4i.

• I claim that we can even divide complex numbers together, though this is not obvious, and requires an
intermediate tool.

Def: The complex conjugate of a complex number a+ bi is the number a− bi. We use the notation

a+ bi = a− bi.

The notation w is read as “w bar.”

Ex: The complex conjugate of
√
2 + πi is

√
2− πi.

Ex: The complex conjugate of 1− 2i is 1 + 2i.

Ex: The complex conjugate of 3i = 0 + 3i is 0− 3i = −3i.

Ex: The complex conjugate of 7 = 7 + 0i is 7− 0i = 7.

• Now to division:

a+ bi

x+ yi
=

a+ bi

x+ yi
· x− yi

x− yi
=

ax− ayi+ bxi− byi2

x2 + y2
=

(ax+ by) + (bx− ay)i

x2 + y2
=

ax+ by

x2 + y2
+ i · bx− ay

x2 + y2
.

Ex:
7 + 2i

−1 + 3i
.

• Since all of our usual arithmetic properties hold, we can solve many equations just like you expect:

Ex: Find the z ∈ C so that
z + i

z + 1
= 3− 2i.

• We can also solve equations which involve the complex conjugation operation, though they may take
a little more effort.

• To see this, we need a few facts about complex conjugation:

– z + w = z + w.

– zw = zw.

– (z) = z

– z/w = z/w.

Ex: Find z ∈ C so that z + i = 3− 2i+ 3z.

– Equivalent to z − i = 3− 2i+ 3z.

– I.e. z − 3z = 3− i.

– Now write z = a+ bi, so we get a− bi− 3(a+ bi) = 3− i.

– Hence, −2a = 3 and −4b = −1, i.e. a = −2/3 and b = 1/4.
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2 Complex Numbers as Vectors

• There are some similarities between complex numbers and vectors.

• Note that a complex number is defined by two real numbers.

• So maybe we should look for similarities between C and R2.

• Let’s compare addition operations:

(a+ bi) + (x+ yi) = (a+ x) + (b+ y)i and

(
a
b

)
+

(
x
y

)
=

(
a+ x
b+ y

)
.

• Wow, those are pretty similar. What about scalar multiplication (by some c ∈ R)?

•
c(a+ bi) = ca+ cbi and c

(
a
b

)
=

(
ca
cb

)
.

• Again, this looks exactly the same.

• They are similar enough that we can visualize C in the same way we visualize R2 and everything we
know from R2 will carry over to C.

• We can draw the number a+ bi as the point (a, b).

• Draw some points.

• Adding complex numbers is exactly like adding vectors.

• We can port over some concepts from R2 to C, like length.

Def: The modulus/absolute value of the number a+ bi is |a+ bi| =
√
a2 + b2.

• Recall the triangle inequality from R2: ∥v⃗ + w⃗∥ ⩽ ∥v⃗∥+ ∥w⃗∥.

• The same is true for C: |z + w| ⩽ |z|+ |w|.

• Here’s an interesting fact:
(a+ bi)(a+ bi) = a2 + b2 = |a+ bi|2.

• A shorter way of writing this is zz = |z|2.

• Another concept we can bring from R2 is that of angles.

• Rather than thinking about angles between vectors, we’re going to focus on the angle a vector makes
with the positive real/horizontal axis.

Q: If I have a complex number with absolute value r and which makes an angle θ with the positive real
axis, how do I express that in the form a+ bi?

• Draw the triangle, a = r cos θ and b = r sin θ.

• So the complex number with magnitude r and which makes angle θ with the positive real axis is
r cos θ + (r sin θ)i = r(cos θ + i sin θ).

Def: The polar form of a complex number is z = r(cos θ+ i sin θ). θ is called the argument. If −π < θ ⩽ π,
then θ is called the principal argument.

Ex: What is the polar form of −1− i? What are the possible arguments of −1− i? What is the principal
argument of −1− i?
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3 Complex Numbers as Numbers

• Complex numbers are numbers, so we should be able to do usual number things with them!

• Let’s talk about exponents.

• For any z ∈ C, we can easily talk about zn for any integer n.

• If n is positive, then zn = z · z · · · z.

• If n is negative, then zn = 1/(z · z · · · z).

• What about z1.5? This is much harder and we’ll come back to it.

• Another thing we can do is look at bz where b is a positive real number and any complex number.

• How could we possibly make sense of this?

• Let’s start with our favorite positive real number, e.

• We want to think about what ex+iy should be.

• Part of that answer is easy: ex+iy = ex · eiy and we know what ex should be.

• eiy is trickier though.

• If you’ve taken calculus, you might have seen the following three things:

ey = 1 + y +
y2

2!
+

y3

3!
+ · · ·+ yn

n!
+ . . .

cos(y) = 1− y2

2!
+

y4

4!
− · · ·+ (−1)ny2n

(2n)!
+ . . .

sin(y) = y − y3

3!
+

y5

5!
− · · ·+ (−1)ny2n+1

(2n+ 1)!
+ . . .

and you probably said, “wow, those things sure look really similar.”

• It turns out they are: let’s look at eiy.

• Woah, it’s eiy = cos(y) + i sin(y).

• And this is how we make sense of eiy as a complex number.

• Now recall the polar form of a complex number: r(cos θ + i sin θ)

• We can rewrite this more simply as reiθ.

Ex: What is the polar form of −7? −7 = 7eiπ.

Ex: Compute (1 + i)2 in two different ways.

– (1 + i)2 = 1 + 2i− 1 = 2i.

– (1 + i)2 = (
√
2eiπ/4)2 = 2eiπ/2 = 2(cos(π/2) + i sin(π/2)) = 2i.

• Wow, the second way seems worse!

Ex: Compute (1 + i)100 in two different ways.

– (1 + i)100 = . . . uh oh.

–
(1 + i)100 = (

√
2eiπ/4)100 = 250e25iπ = 250(cos(25π) + i sin(25π)) = −250.
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• Now that we’ve seen that polar form makes zn easier for integers n, let’s return to z1.5.

• z1.5 = z3/2, so we had better learn some things about fractional powers.

• Let’s start with fractions that look like z1/n for a positive integer n.

• Recall that this means “nth root.”

• Problem: sometimes there are multiple nth roots.

• 1 has two square roots: ±1.

• −1 has two square roots: ±i.

• Let’s start with square roots: these are “easy enough” to do with brute force:

Ex: Find every square root of 7 + 24i.

– We can do this by solving the equation z2 = 7 + 24i.

– To do this, we can write z = a+ bi and try to solve for a and b.

(a+ bi)2 = 7 + 24i

⇒ a2 − b2 + 2abi = 7 + 24i.

– From here, set the real and imaginary parts equal to one another:

– a2 − b2 = 7 and 2ab = 24.

– Use the second equation to solve for b: b = 12/a.

– Substitute into the first equation:

a2 −
(
12

a

)2

= 7 ⇒ a4 − 144 = 7a2 ⇒ a4 − 7a2 − 144 = 0.

– Now solve the quadratic in a2. Can substitute u = a2 if you like.

a2 =
7±

√
49 + 4 · 144
2

= −9, 16.

– Recall that we want real numbers a which work, so a = ±4.

– Now b = 12/a yields that the roots of 7 + 24i are 4 + 3i and −4− 3i.

• This will always work for square roots.

• For cube roots on the other hand, this doesn’t work so well...

Ex: Find every cube root of 1 + i.

– We’re looking for numbers z so that z3 = 1 + i.

– Polar form is extremely helpful here.

– z = reiθ.

– 1 + i =
√
2eiπ/4.

– We want to find r and θ so that r3e3iθ =
√
2eiπ/4.

– So we’d better have: r3 =
√
2 = 21/2 and e3iθ = eiπ/4.

– The first one is easy to solve: r = 21/6.

– The second one is trickier than you think.

– The “obvious” answer is θ = π/12. You get this by solving 3θ = π/4.
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– But there are two less obvious answers as well: θ = 3π/4 and θ = 17π/12.

– Why do these work? For θ = 3π/4:

e3iθ = e9iπ/4 = cos(9π/4) + i sin(9π/4) = cos(π/4) + i sin(π/4) = eiπ/4.

– For θ = 17π/12:
e3iθ = e17iπ/4 = eiπ/4e2iπ = eiπ/4.

– Okay, it’s great to see how they work after the fact, but where did they come from?

– Our three θ values of π/12, 9π/12, and 17π/12 came from solving:

3θ = π/4

3θ = π/4 + 2π

3θ = π/4 + 4π.

– In the end, we have three cube roots: 21/6eiπ/12, 21/6e9iπ/12, 21/6e17iπ/12.

• In general, there will be n nth roots of any complex number.

• To find the solutions to zn = w, you can:

– Write the components in polar form z = reiθ and w = seiφ.

– Rewrite the equation zn = w becomes rneinθ = seiφ.

– Solve rn = s.

– Solve the n different equations:

nθ = φ

nθ = φ+ 2π

...

nθ = φ+ (n− 1)2π

Ex: Find the fourth roots of −i.

– Write z = reiθ

– Write −i = e3π/2.

– Solve r4e4iθ = e3π/2.

– So r = 1.

– To get our θ values: solve

4θ = 3π/2

4θ = 3π/2 + 2π

4θ = 3π/2 + 4π

4θ = 3π/2 + 6π

– Now we have θ = 3π/8, 7π/8, 11π/8, 15π/8.

– Hence, our fourth roots of −i are e3iπ/8, e7iπ/8, e11iπ/8, and e15iπ/8.
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4 The Quadratic Formula

• It turns out that the quadratic formula works just as well for quadratics with complex coefficients as
for quadratics with real coefficients.

• I want to update our understanding though, since there is a detail that is a little confusing.

• The solutions to
az2 + bz + c = 0

are

z =
−b+ the two square roots of b2 − 4ac

2a
.

Ex: Solve the equation z2 + (3 + 2i)z + 5 + i = 0.

– Quadratic formula says:

z =
−(3 + 2i) + the two square roots of (3 + 2i)2 − 4(5 + i)

2
.

– So we’d better find the two square roots of

(3 + 2i)2 − 4(5 + i) = (5 + 12i)− 20− 4i = −15 + 8i.

– Solve
(a+ bi)2 = −15 + 8i.

– Get a2 − b2 = −15 and 2ab = 8.

– Hence, b = 4/a.

– So

a2 − 16

a2
= −15 ⇒ a4 + 15a2 − 16 = 0 ⇒ (a2 + 16)(a2 − 1) = 0.

– Hence, a = ±1.

– So our square roots are 1 + 4i and −1− 4i.

– So our values of z are:

z =
−3− 2i+ 1 + 4i

2
,
−3− 2i+ (−1− 4i)

2
.
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