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1 Eigenvalues and Eigenvectors

• Let’s look at the linear map given by (
x
y

)
7→
(
1 −2
0 2

)(
x
y

)
.

• We can play around with it for a bit, and find that A(1, 0) = (1, 0). Also, A(2, 0) = (2, 0). And
A(−1, 0) = (−1, 0).

• Weird!

• Question: are there any more vectors like that?

• Not really, but we get kinda close in the fourth quadrant.

• There, we find that A(2,−1) = (4,−2). And A(−2, 1) = (−4, 2). And A(−4, 2) = (−8, 4).

• We can explore around for a little while, but we won’t find anything else like this.

• So what happened here?

• In each case, we have a setting where Av was a scalar multiple of v.

• When we notice a phenomenon in mathematics, we like to give it a name, and then explore it.

Def: Suppose that v ∈ Rn is a nonzero vector and that A is an n× n matrix. Suppose also that λ ∈ R and
that Av = λv. Then we call v an eigenvector and λ an eigenvalue of A. The set of eigenvalues of A is
called the spectrum of A.

• Aside: where do the words eigenvector and eigenvalue come from?

– In modern German, the prefix “eigen-” roughly translates into “self-”

– So an eigenvector is a self-vector.

– Not particularly enlightening.

– We knew about eigenvectors and eigenvalues long before they had those names: Cauchy called
them “characteristic roots.”

– Hilbert gave us the name “eigenvalue” long after Cauchy had come up with them.

– He used “eigenschaften” as a translation into German of Cauchy’s “caractéristique.”

– He then kept the prefix of “eigenschaften” to refer to the various numbers and vectors that Cauchy
had discovered.

– We then took Hilbert’s notation, but only translated half of the word, and we got eigenvalues and
eigenvectors.

– See Eric Tou’s article: https://maa.org/press/periodicals/convergence/math-origins-eigenvectors-and-eigenvalues
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Ex: The matrix A has:

– Eigenvalues: λ1 = 1 and λ2 = 2.

– Eigenvectors: (1, 0), (2, 0), (−π, 0), . . . and (2,−1), (−2, 1), (4,−2), (−2 ln(2), ln(2)), . . . .

• In the above example, even though there are infinitely many eigenvectors, there are essentially only
two classes of eigenvectors: those associated with λ1 (scalar multiples of (1, 0))and those associated
with λ2 (scalar multiples of (−2, 1)).

Ex: Let T : R2 → R2 be the function which reflects a vector across the line y = 2x. What are the
eigenvalues and eigenvectors of T?

– Any vector on the line y = 2x is an eigenvector with eigenvalue 1.

– These are the scalar multiples of (1, 2).

– Any vector perpendicular to y = 2x is an eigenvector with eigenvalue −1.

– These are the scalar multiples of (−2, 1).

– No other vector is an eigenvector.

Q: Given a matrix, how do we find the eigenvectors and eigenvalues without appealing to geometry?

• Quick fact: If A is an invertible matrix, and Av = 0, then v = 0.

– Why?

– Multiply both sides of Av = 0 by A−1.

• Equivalent fact: If Av = 0 for a nonzero vector v, then A is not invertible.

• Now we can find eigenvectors and values.

• Eigenvalues first:

– Suppose we have an eigenvalue λ of a matrix A.

– Then there is a nonzero vector v so that Av = λv

– Rewrite to get (λIn −A)v = 0.

– Now v is not zero.

– So λIn −A is noninvertible.

– I.e. det(λIn −A) = 0.

• It turns out that the reverse fact is true: if det(λIn −A) = 0, then λ is an eigenvalue.

• Summary: the eigenvalues of a matrix A are exactly the roots of the polynomial det(xIn −A).

Def: The characteristic polynomial of a n× n matrix A is det(xIn −A).

Ex: Find the eigenvalues of A = ( 1 2
3 4 ).

• Solution: 5±
√
33

2 .

• Hm, we didn’t get great numbers, but we did get some numbers I guess.

• To be honest, though, the eigenvalues aren’t the interesting thing.

• We started our discussion by discovering eigenvectors, then eigenvalues were a necessary evil to describe
the interesting phenomenon.

Ex: What are the eigenvectors and eigenvalues of A = ( 1 −2
0 2 )?

– Eigenvalues first: λ1 = 1 and λ2 = 2.
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– Now we want to find solutions to Av = v and Av = 2v.

– I.e. we want to find (x, y) so that (I2 −A)(x, y) = 0, and (2I2 −A)(x, y) = 0

– Hm, these look like some systems of equations.

– λ1 = 1:

∗ I2 −A = ( 0 2
0 −1 )

∗ The RREF of the augmented matrix for the corresponding system is:(
[cc|c]0 1 0

0 0 0

)
.

∗ We assign parameters to columns without leading 1s, so any vector of the form (t, 0) = t(1, 0)
where t ̸= 0 is an eigenvector with eigenvalue λ1 = 1.

∗ Cool, this is what we found earlier.

– λ2 = 2:

∗ 2I2 −A = ( 1 2
0 0 ).

∗ This is already in RREF, so we find that (assigning y = s) any vector of the form (−2s, s) =
s(−2, 1) is an eigenvector with eigenvalue λ2 = 2.

∗ Cool, this is also what we found earlier.

• Observation: The eigenvalues of a triangular matrix are its diagonal entries.

Ex: Find the eigenvectors and eigenvalues of

A =

1 0 1
0 1 0
0 0 −3

 .

– Eigenvalues are λ1 = 1 and λ2 = −3.

– λ1 = 1:

∗ The RREF of the relevant system is[ccc|c]0 0 1 0
0 0 0 0
0 0 0 0


meaning that we get x = s, y = t, and z = 0.

∗ So the eigenvectors with eigenvalue 1 are the nonzero vectors of the form

s

1
0
0

+ t

0
1
0

 .

– λ2 = −3:

∗ The RREF of the relevant system is[ccc|c]1 0 1
4 0

0 1 0 0
0 0 0 0


and setting z = p, we get that the eigenvectors with eigenvalue −3 are the nonzero vectors of
the form

p

− 1
4
0
1

 .
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• Observation: when finding eigenvectors, we’re solving systems of linear equations that are guaranteed
to have parameters. This means that we’ll have “basic solutions” and we “get” to give these basic
solutions a special name: basic eigenvectors.

• Observation: some eigenvalues count for more than just one (whatever this means). The eigenvalue
λ1 = 1 counted “twice” since the characteristic polynomial factored as (x− 1)2(x+ 3).

Def: Suppose that A is a square matrix with eigenvalues λ1, . . . , λk. Suppose that the characteristic poly-
nomial of A factors as (x− λ1)

n1 . . . (x− λk)
nk . Then the multiplicity of λi is ni.

Ex: Find the eigenvalues and eigenvectors of A = ( 0 −1
1 0 ).

– xI2 −A = ( x 1
−1 x ).

– Characteristic polynomial: x2 + 1.

– This has roots, I guess...x = ±i.

– λ1 = i:

∗ iI2 −A = ( i 1
−1 i )

∗ Relevant RREF is (
[cc|c]1 −i 0

0 0 0

)
.

∗ So I guess the eigenvectors with eigenvalue i are any of the nonzero vectors of the form t(i, 1)?

– λ2 = −i:

∗ −iI2 −A = ( −i 1
−1 −i ).

∗ Relevant RREF is (
[cc|c]1 i 0

0 0 0

)
.

∗ So the eigenvectors with eigenvalue −i are any of the nonzero vectors of the form s(−i, 1).

• What’s going on here? Remember that A represents rotation: this can’t have (real) eigenvectors.

Ex: Find the eigenvalues and eigenvectors of A = ( 1 1
0 1 ).

– Eigenvalues are λ1 = 1 and that’s it.

– To find eigenvectors, relevant RREF is (
[cc|c]0 1 0

0 0 0

)
.

– Now we get that any vector of the form t(1, 0) is an eigenvector with eigenvalue 1.

• Observation: the number of basic eigenvectors of λ does not have to equal the multiplicity of λ.

• Fact: number of basic eigenvectors of λ is less than or equal to the multiplicity of λ.

2 Diagonalization

Ex: Let A = ( 4 −2
−1 3 ). Compute A100.

– Here’s a magic observation: A = PDP−1 where

P =

(
1 −2
1 1

)
D =

(
2 0
0 5

)
P−1 =

1

3

(
1 2
−1 1

)
.

– We’ll talk about where this comes from later, but for now, we’ll just make the observation.
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– Why is it helpful?

–

A100 = (PDP−1)100 = PD100P−1 =

(
1 −2
1 1

)(
2100 0
0 5100

)
· 1
3

(
1 2
−1 1

)
.

• Lesson: if A = PDP−1 for a diagonal matrix D, then An is easy to compute.

Def: A square matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D so

that A = PDP−1.

• How the heck could we ever hope to do this?

Def: If A and B are n× n matrices, they are said to be similar if there exists an invertible n× n matrix P
for which A = PBP−1.

• Fact: If A and B are similar, then they have the same eigenvalues.

– Suppose A = PBP−1 and λ is an eigenvalue of A with eigenvector v.

– Then we claim that λ is an eigenvalue of B with eigenvector P−1v.

– Note that Av = λv implies that PBP−1v = λv, i.e. B(P−1v) = λ(P−1v).

– The reverse is also true: any eigenvalue of B is an eigenvalue of A.

– So A and B have the same eigenvalues.

• Now, if we hope to write A = PDP−1 where D is diagonal.

• This means that A and D had better have the same eigenvalues.

• But the eigenvalues of D are the diagonal entries.

• So the diagonal entries of D had better be the eigenvalues of A.

• The matrix P is a little harder to figure out. Here’s the theorem:

Thm: Suppose that A is an n × n matrix. Then A is diagonalizable if and only if A has n eigenvectors
v1, . . . , vn so that the matrix

P =

 | | |
v1 v2 . . . vn
| | |


is invertible. If A is diagonalizable, then A = PDP−1 where D = diag(λ1, . . . , λn) where λi is the
eigenvalue for vi.

Ex: Diagonalize the matrix A = ( 4 −2
−1 3 ), if possible.

– This is the matrix from the beginning of this section.

Ex: Diagonalize the matrix

A =

1 0 1
0 1 0
0 0 −3


if possible.

– In the last section, we saw that A has eigenvalues λ1 = 1 and λ2 = −3.

– The eigenvectors for λ1 = 1 have the form (s, t, 0) for s and t not both zero.

– The eigenvectors for λ2 = −3 have the form (−p/4, 0, p) for p ̸= 0.

– We want to pick three eigenvectors which make P = (v1v2v3) invertible.

– Always safe choice: pick basic eigenvectors for v1, v2, v3.
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– Talk about nonuniqueness here: choose different ordering, and choose different eigenvectors.

Ex: Diagonalize the matrix A = ( 1 1
0 1 ) if possible.

– Before, we saw that A has only one eigenvalue λ = 1.

– Every eigenvector of A has the form (t, 0) for t ̸= 0.

– So if we try to form a matrix of eigenvectors P = ( t1 t2
0 0 ), we can’t make P invertible.

– This means that A is not diagonalizable.

• Fact: A is diagonalizable if and only if for every eigenvalue λ, the number of basic eigenvalues equals
the multiplicity of λ.

Ex: Suppose that A is a 3× 3 matrix with eigenvalues 1, 2, 3. Is A diagonalizable?

– The characteristic polynomial of A has degree 3, and since it has three different roots, it must be
(x− 1)(x− 2)(x− 3).

– Now the multiplicity of each eigenvalue is 1.

– The number of basic eigenvectors of each eigenvalue must be at least 1, otherwise we wouldn’t
have an eigenvalue.

– But the number of basic eigenvectors of each eigenvalue must is no more than the multiplicity,
i.e. 1.

– So the number of basic eigenvectors equals the multiplicity of each eigenvalue.

– Hence, A is diagonalizable.

• Note: “dimension of the λ-eigenspace” means “number of basic λ-eigenvectors.”

• Note: “basis of the λ-eigenspace” means “list of basic λ-eigenvectors.”

• Note: A = PDP−1 is equivalent to P−1AP = D.

3 Applications of Spectral Theory

• Now, we’re going to see some powerful examples of linear algebra!

• One application is mathematical, and the other is intensely practical.

• First up, we’ll look at linear recurrence sequences.

Def: A linear recurrence sequence is a sequence of numbers x0, x1, . . . for which there exist constants
c1, . . . , cd so that

xn = c1xn−1 + c2xn−2 + · · ·+ cdxn−d.

Ex: The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . is a linear recurrence sequence because it satisfies Fn =
Fn−1 + Fn−2.

• An important question we might ask: Can we describe Fn as a function of n? Can I find F100 without
finding F0, . . . , F99?

– We can do this by considering vectors of the form (Fk, Fk+1).

– For example, we have (0, 1), (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), etc.

– How do we get from one vector to the next?

– If you know that (144, 233) is one such vector, the next must be (233, 144 + 233).

– To get from (Fk, Fk+1) to (Fk+1, Fk+2), we take Fk+1 to be the second entry in the previous vector
and we take Fk+2 to be the sum of the entries of the previous vector.
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– This sounds awfully linear...

– Notice that we have (
Fk+1

Fk+2

)
=

(
0 1
1 1

)(
Fk

Fk+1

)
– This means that (

Fk

Fk+1

)
=

(
0 1
1 1

)k (
F0

F1

)
.

– But now we’re interested in raising a matrix to a power! This means we have to diagonalize:

– The eigenvalues of ( 0 1
1 1 ) are the roots of x(x− 1)− 1 = x2 − x− 1, i.e.

1±
√
5

2
.

– An eigenvector for λ1 = 1+
√
5

2 is (
−1+

√
5

2
1

)
.

– An eigenvector for λ2 = 1−
√
5

2 is (
−1−

√
5

2 1
)
.

– Hence, (
0 1
1 1

)k

=

(
1−

√
5

2
−1−

√
5

2
1 1

)(
1+

√
5

2 0

0 1−
√
5

2

)k (
1−

√
5

2
−1−

√
5

2
1 1

)−1

.

– Hence,

(
Fk

Fk+1

)
=

(
1−

√
5

2
−1−

√
5

2
1 1

)(
1+

√
5

2 0

0 1−
√
5

2

)k (
1−

√
5

2
−1−

√
5

2
1 1

)−1(
0
1

)

=


1√
5

((
1+

√
5

2

)k
−
(

1−
√
5

2

)k)
1√
5

((
1+

√
5

2

)k+1

−
(

1−
√
5

2

)k+1
)
 .

– Letting φ1 = 1+
√
5

2 and φ2 = 1−
√
5

2 , we have the nice form

Fk =
1√
5
(φk

1 − φk
2).

Ex: Find a closed-form expression for the sequence with x0 = 0, x1 = 0, x2 = 1, and xn = 6xn−1 −
11xn−2 + 6xn−3.

– We’ll do this problem by first, writing down the recurrence relation as a matrix: xn

xn+1

xn+2

 =

0 1 0
0 0 1
6 −11 6

xn−1

xn

xn+1


– This means that  xn

xn+1

xn+2

 =

0 1 0
0 0 1
6 −11 6

n0
0
1

 .
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– Now we diagonalize the coefficient matrix:0 1 0
0 0 1
6 −11 6

 =

1 1 1
1 2 3
1 4 9

1 0 0
0 2 0
0 0 3

1 1 1
1 2 3
1 4 9

−1

– Then large powers of the coefficient matrix are:0 1 0
0 0 1
6 −11 6

k

=
1

2

 −6(2k − 3k−1 − 1) 2k+3 − 3k+1 − 5 −2k+1 + 3k + 1
−6(2k+1 − 3k − 1) 2k+4 − 3k+2 − 5 −2k+2 + 3k+1 + 1

−6(2k+2 − 3k+1 − 1) 2k+5 − 3k+3 − 5 −2k+3 + 3k+2 + 1


– Finally, multiply by the initial condition vector (0, 0, 1) to get

xk =
−2k+1 + 3k + 1

2
.

• The other type of application is very practical and relevant.

• Markov chains are/were commonly used in predictive text algorithms.

• Amusing example from around the time that I was graduating from college: https://kingjamesprogramming.
tumblr.com/

• Another example is the type of predictive text algorithm that your phone/Google/Apple/Microsoft
uses to predict what words you want to use when writing an email or text.

• Modern predictive text algorithms (e.g. ChatGPT) use much more sophisticated algorithms.

• But we can do a toy example to see the basic idea.

• You have a language consisting of only three words: “every,” “student,” and “learns.”

• You also have a large book filled with sentences consisting of those three words.

• After doing some statistical analysis on the book, you find that:

– If you find the word “every,” the next word is “every” 10% of the time, the next word is “student”
60% of the time, and the next word is “learns” 30% of the time.

– If you find the word “student,” the next word is “every” 30% of the time, the next word is
“student” 20% of the time, and the next word is “learns” 50% of the time.

– If you find the word “learns,” the next word is “every” 50% of the time, the next word is “student”
40% of the time, and the next word is “learns” 10% of the time.

Ex: The first word in the book is “Every.” What is the probability that

1. ...the word “learns” appears next?

2. ...the word “learns” appears 2 words after the word “every?”

3. ...the word “learns” appears n words after the word “every?”

1. The probability that the second word is “learns” is 0.3, just reading off of the information given.

2. Draw a tree where the the first level is the word “every,” the second level is each of the words
“every,” “student,” and “learns” with the edges weighted appropriately, and the third level is a
bunch of copies of the word “learns,” with the edges weighted appropriately. The outcome is

0.1 · 0.3 + 0.6 · 0.5 + 0.3 · 0.1 = 0.36.

So there’s a 36% chance that the third word is “learns.” Hm, something looks linear here...
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3. This one is trickier. A matrix is a helpful tool here!

– We’re going to set up the matrix of probabilities: the column will correspond to the “current”
word and the row will correspond to the “next” word:

M =

0.1 0.3 0.5
0.6 0.2 0.4
0.3 0.5 0.1


– Quick observation: the columns each sum to 1.

– Let’s think about the matrix M2. The computations are a little gnarly, but

M2 =

0.34 0.34 0.22
0.3 0.42 0.42
0.36 0.24 0.36

 .

– That 0.36 in the lower left (corresponding to the “every” column and the “learns” row) was
exactly the same computation we did before.

– General fact: The entry in the “word1” column and “word2” row of Mn is the probability
that “word2” appears n words after “word1.”

– By computing M2, we can see that the probability that “every” is two words after “every” is
0.34, while the probability that “student” is two words after “every” is 0.3.

– To get Mn, we need to diagonalize.

– Use a computer to do this: find eigenvalues and eigenvectors. One eigenvalue is λ1 = 1 and an

eigenvector is (52/172, 66/172, 54/172). The other two eigenvalues are complex: λ2 = −3+i
√
3

10

and λ3 = −3−i
√
3

10 .

– Use a computer to do this: the probability that “learns” appears n words after the word
“every” is:

1

172

(
(−27 + 31

√
3i)

(
−3 + i

√
3

10

)n

+ (−27− 31
√
3i)

(
−3− i

√
3

10

)n

+ 54

)
.

– Observation: as n grows, the two exponential terms get closer and closer to zero.

– You can apply this observation to every entry of the matrix. As n grows, the entries of Mn

get closer and closer to:

1

172

52 52 52
66 66 66
54 54 54


– Interpretation: the probability that a given word is “every” is 52/172. The probability that

a given word is “student” is 66/172. The probability that a given word is “learns” is 54/172.

Def: A matrix M is called a Markov/migration/transition matrix if:

– It is square.

– All of its entries are nonnegative.

– Each of its columns sums to 1.

• We think of the columns of the matrix as representing “current states” and the rows as representing
“future states.”

• Fact: Any Markov matrix has 1 has an eigenvalue with only 1 basic eigenvector.

• Fact: Suppose M is a Markov matrix and suppose there is a k for which the entries of Mk are all
strictly greater than 0. Then as n grows, the columns of Mn approach the 1-eigenvector whose entries
sum to 1.
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• Note: your book misses the fact the requirement that Mk has strictly positive entries for some k.
However, this will be true for all examples that you actually have to worry about for this course.

• For a counterexample to your book’s claim that the state vector always approaches the appropriate
1-eigenvector, use the Markov matrix M = ( 0 1

1 0 ) and the initial state (1, 0).

Ex: There are three towns, A, B, and C. Each year, 10% of town A’s residents move to town B and 20%
of town A’s residents move to town C. Each year, 40% of town B’s residents move to town A and
10% move to town C. Each year, 20% of town C’s residents move to town A and 20% move to town
B. Initially, town A has 300 people, town B has 100 people, and town C has 200 people. How many
people live in each town after a long time?

– Set up the transition matrix:

M =

0.7 0.4 0.2
0.1 0.5 0.2
0.2 0.1 0.6

 .

– After t years, we can tell how many residents of each town there are by looking at0.7 0.4 0.2
0.1 0.5 0.2
0.2 0.1 0.6

t300
100
200

 .

– The entries of M are strictly positive.

– Hence, as t grows, we can tell what M t looks like by finding the 1-eigenvector of M whose entries
sum to 1.

– After doing some work, you find that the eigenvectors for eigenvalue 1 have the form (18t/11, 8t/11, t).

– Getting those numbers to add up to 1 requires t = 11/37, so you find that

M t → 1

37

18 18 18
8 8 8
11 11 11


– Now multiply by (300, 100, 200) to get about (292, 130, 178).

Def: For a Markov matrix M and an initial condition v, the steady-state vector is the vector which Mnv
approaches as n grows, if such a vector exists.

• Fact: The steady state vector is the 1-eigenvector whose entries sum to the sum of entries of v.

Ex: Suppose that M is a Markov matrix with positive entries. Suppose that M has 1-eigenvectors of the
form t(2, 2, 1) for t ̸= 0. Suppose that (1, 3, 9) is an initial condition. What does Mn · (1, 3, 9) approach
as n grows?

– We want a vector of the form t(2, 2, 1) whose entries add up to 1 + 3 + 9 = 13.

– This means that we need t = 13/5.

– The steady state vector is then (26/5, 26/5, 13/5).

Ex: You are battling some Pokémon against your friend. In a battle, you each typically bring 6 Pokémon,
then you battle, and you see who wins. You are better than your friend, so to make things more
competitive, if you win a match, you bring one fewer Pokémon to the next battle, down to a minimum
of four. Your probabilities of winning are as follows:

Number of Pokémon you bring Probability you win
6 0.8
5 0.6
4 0.3
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What proportion of games do you win in the long run?

– We want to set up a Markov matrix for this situation.

– We need to have some states, so we’ll choose three states:

∗ You win zero games in a row

∗ You win one game in a row

∗ You win two or more games in a row

– From here, we can set up a transition matrix describing the various probabilities of transitioning
from state to state:

M =

0.2 0.4 0.7
0.8 0 0
0 0.6 0.3


– Not hard to check: M2 has strictly positive entries, so the columns of Mn converge to the 1-

eigenvector.

– Now we want to find the steady state vector for this system:

I3 −M =

 0.8 −0.4 −0.7
−0.8 1 0
0 −0.6 0.7


– Putting this in RREF yields: 1 0 −35/24

0 1 −28/24
0 0 0


– So we get eigenvectors of the form: s(35/24, 28/24, 1).

– The steady state vector is the 1-eigenvector whose coordinates add up to 1, which is (35/87, 28/87, 24/87).

– Hence, 35/87 of the the time, we’re in the “you win zero in a row” state

– 28/87 of the the time, we’re in the “you win one in a row” state

– And 24/87 of the time, we’re in the “you win two or more in a row” state.

– The long term proportion of games that you win is the proportion of events that occur in either
of the last two states, which is 52/87.
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