

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Upper Bounds on Polynomial Root Separation

Greg Knapp

Department of Mathematics and Statistics
University of Calgary

3 April 2025

Pacific Institute *for the*
Mathematical Sciences

Contact: greg.knapp@ucalgary.ca

A Thue Equation

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions to $|X^6 + 3X^5Y - Y^6| = 1$.

A Thue Equation

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions to $|X^6 + 3X^5Y - Y^6| = 1$.

Claim

There are only finitely many such solutions.

A Thue Equation

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions to $|X^6 + 3X^5Y - Y^6| = 1$.

Claim

There are only finitely many such solutions.

Reductions

- 1 If (x, y) is a solution, so is $(-x, -y)$, so assume $y \geq 0$.

A Thue Equation

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions to $|X^6 + 3X^5Y - Y^6| = 1$.

Claim

There are only finitely many such solutions.

Reductions

- 1 If (x, y) is a solution, so is $(-x, -y)$, so assume $y \geq 0$.
- 2 Only two solutions (x, y) have $y = 0$ —namely, $(\pm 1, 0)$ —so assume $y \geq 1$.

A Thue Equation

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions to $|X^6 + 3X^5Y - Y^6| = 1$.

Claim

There are only finitely many such solutions.

Reductions

- 1 If (x, y) is a solution, so is $(-x, -y)$, so assume $y \geq 0$.
- 2 Only two solutions (x, y) have $y = 0$ —namely, $(\pm 1, 0)$ —so assume $y \geq 1$.
- 3 Only two solutions (x, y) have $y = 1$ —namely, $(0, 1)$ and $(-3, 1)$ —so assume $y \geq 2$.

A Thue Equation: Initial Approach

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

A Thue Equation: Initial Approach

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

First, divide by y^6 :

$$\left| \left(\frac{x}{y} \right)^6 + 3 \left(\frac{x}{y} \right)^5 - 1 \right| = \frac{1}{y^6}.$$

A Thue Equation: Initial Approach

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

First, divide by y^6 :

$$\left| \left(\frac{x}{y} \right)^6 + 3 \left(\frac{x}{y} \right)^5 - 1 \right| = \frac{1}{y^6}.$$

Next, factor the left-hand side:

$$\prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| = \frac{1}{y^6}$$

where $\alpha_1, \dots, \alpha_6$ are the roots of $X^6 + 3X^5 - 1$.

A Thue Equation: Initial Approach

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

First, divide by y^6 :

$$\left| \left(\frac{x}{y} \right)^6 + 3 \left(\frac{x}{y} \right)^5 - 1 \right| = \frac{1}{y^6}.$$

Next, factor the left-hand side:

$$\prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| = \frac{1}{y^6}$$

where $\alpha_1, \dots, \alpha_6$ are the roots of $X^6 + 3X^5 - 1$. Let j be the index which minimizes $|x/y - \alpha_j|$.

A Thue Equation: Initial Approach

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

First, divide by y^6 :

$$\left| \left(\frac{x}{y} \right)^6 + 3 \left(\frac{x}{y} \right)^5 - 1 \right| = \frac{1}{y^6}.$$

Next, factor the left-hand side:

$$\prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| = \frac{1}{y^6}$$

where $\alpha_1, \dots, \alpha_6$ are the roots of $X^6 + 3X^5 - 1$. Let j be the index which minimizes $|x/y - \alpha_j|$. Then,

$$\left| \frac{x}{y} - \alpha_j \right| \leq \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right|^{1/6}$$

A Thue Equation: Initial Approach

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

First, divide by y^6 :

$$\left| \left(\frac{x}{y} \right)^6 + 3 \left(\frac{x}{y} \right)^5 - 1 \right| = \frac{1}{y^6}.$$

Next, factor the left-hand side:

$$\prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| = \frac{1}{y^6}$$

where $\alpha_1, \dots, \alpha_6$ are the roots of $X^6 + 3X^5 - 1$. Let j be the index which minimizes $|x/y - \alpha_j|$. Then,

$$\left| \frac{x}{y} - \alpha_j \right| \leq \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right|^{1/6} = \frac{1}{y}.$$

A Thue Equation: An Obstacle

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

A Thue Equation: An Obstacle

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

Helpful fact?

If (x, y) is a solution with $y \geq 2$ and $\alpha_1, \dots, \alpha_6$ are the roots of $f(X) = X^6 + 3X^5 - 1$, then

$$\left| \frac{x}{y} - \alpha_j \right| \leq \frac{1}{y} \leq \frac{1}{2}.$$

A Thue Equation: An Obstacle

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Problem

Find all integer solutions (x, y) to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$.

Helpful fact?

If (x, y) is a solution with $y \geq 2$ and $\alpha_1, \dots, \alpha_6$ are the roots of $f(X) = X^6 + 3X^5 - 1$, then

$$\left| \frac{x}{y} - \alpha_j \right| \leq \frac{1}{y} \leq \frac{1}{2}.$$

Obstacle (Dirichlet)

For any irrational $\alpha \in \mathbb{R}$, there are infinitely many relatively prime $p, q \in \mathbb{Z}$ with

$$\left| \frac{p}{q} - \alpha \right| \leq \frac{1}{q^2}.$$

A Thue Equation: Searching for Improvements

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

An Inefficiency

Note that

$$\left| \frac{x}{y} - \alpha_j \right| \leq \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right|^{1/6}$$

is “good” if and only if all $|x/y - \alpha_i|$ are approximately the same size.

A Thue Equation: Searching for Improvements

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

An Inefficiency

Note that

$$\left| \frac{x}{y} - \alpha_j \right| \leq \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right|^{1/6}$$

is “good” if and only if all $|x/y - \alpha_i|$ are approximately the same size.

Roots

Complex roots of $X^6 + 3X^5 - 1$:

$$\alpha_1 \approx -3.004$$

$$\alpha_2 \approx 0.767$$

$$\alpha_3, \alpha_4 \approx -0.66 \pm 0.52i$$

$$\alpha_5, \alpha_6 \approx 0.28 \pm 0.74i$$

A Thue Equation: Improved Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let (x, y) be a solution to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$. Then

A Thue Equation: Improved Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let (x, y) be a solution to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$. Then

$$\frac{1}{y^6} = \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right|$$

A Thue Equation: Improved Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let (x, y) be a solution to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$. Then

$$\begin{aligned}\frac{1}{y^6} &= \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| \\ &= \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \frac{x}{y} - \alpha_j + \alpha_j - \alpha_i \right|\end{aligned}$$

A Thue Equation: Improved Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let (x, y) be a solution to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$. Then

$$\begin{aligned}\frac{1}{y^6} &= \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| \\ &= \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \frac{x}{y} - \alpha_j + \alpha_j - \alpha_i \right| \\ &\geq \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \alpha_j - \alpha_i \right| - \left| \frac{x}{y} - \alpha_j \right| \end{aligned}$$

A Thue Equation: Improved Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let (x, y) be a solution to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$. Then

$$\begin{aligned}\frac{1}{y^6} &= \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| \\ &= \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \frac{x}{y} - \alpha_j + \alpha_j - \alpha_i \right| \\ &\geq \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \alpha_j - \alpha_i \right| - \left| \frac{x}{y} - \alpha_j \right| \\ &\geq \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} 0.43 |\alpha_j - \alpha_i|\end{aligned}$$

A Thue Equation: Improved Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let (x, y) be a solution to $|X^6 + 3X^5Y - Y^6| = 1$ with $y \geq 2$. Then

$$\begin{aligned}\frac{1}{y^6} &= \prod_{i=1}^6 \left| \frac{x}{y} - \alpha_i \right| \\ &= \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \frac{x}{y} - \alpha_j + \alpha_j - \alpha_i \right| \\ &\geq \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} \left| \alpha_j - \alpha_i \right| - \left| \frac{x}{y} - \alpha_j \right| \\ &\geq \left| \frac{x}{y} - \alpha_j \right| \prod_{i \neq j} 0.43 |\alpha_j - \alpha_i| \\ &\geq \frac{1}{120} \left| \frac{x}{y} - \alpha_j \right|.\end{aligned}$$

A New Approximation Result

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Before and After

Before: $\left| \frac{x}{y} - \alpha_j \right| \leq \frac{1}{y}$

A New Approximation Result

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Before and After

$$\text{Before: } \left| \frac{x}{y} - \alpha_j \right| \leq \frac{1}{y}$$

$$\text{After: } \left| \frac{x}{y} - \alpha_j \right| \leq \frac{120}{y^6}$$

A New Approximation Result

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Before and After

Before: $\left| \frac{x}{y} - \alpha_j \right| \leq \frac{1}{y}$

After: $\left| \frac{x}{y} - \alpha_j \right| \leq \frac{120}{y^6}$

Conclusion

Using Thue's improvement to Liouville's Theorem, there are only finitely many such $\frac{x}{y}$.

A New Approximation Result

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Before and After

Before: $\left| \frac{x}{y} - \alpha_j \right| \leq \frac{1}{y}$

After: $\left| \frac{x}{y} - \alpha_j \right| \leq \frac{120}{y^6}$

Conclusion

Using Thue's improvement to Liouville's Theorem, there are only finitely many such $\frac{x}{y}$.

Key Ingredient

We used a lower bound on $|\alpha_j - \alpha_i|$.

Relevant Definitions

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let

$$f(x) = \sum_{i=0}^n b_i x^i = b_n \prod_{j=1}^n (x - \alpha_j) \in \mathbb{C}[x].$$

Relevant Definitions

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation
Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let

$$f(x) = \sum_{i=0}^n b_i x^i = b_n \prod_{j=1}^n (x - \alpha_j) \in \mathbb{C}[x].$$

Definitions

- The separation of $f(x)$ is $\text{sep}(f) := \min_{\alpha_i \neq \alpha_j} |\alpha_i - \alpha_j|$.

Relevant Definitions

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation
Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let

$$f(x) = \sum_{i=0}^n b_i x^i = b_n \prod_{j=1}^n (x - \alpha_j) \in \mathbb{C}[x].$$

Definitions

- The separation of $f(x)$ is $\text{sep}(f) := \min_{\alpha_i \neq \alpha_j} |\alpha_i - \alpha_j|$.
- The Mahler measure of $f(x)$ is

$$M(f) := |b_n| \prod_{1 \leq j \leq n} \max(1, |\alpha_j|).$$

Relevant Definitions

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let

$$f(x) = \sum_{i=0}^n b_i x^i = b_n \prod_{j=1}^n (x - \alpha_j) \in \mathbb{C}[x].$$

Definitions

- The separation of $f(x)$ is $\text{sep}(f) := \min_{\alpha_i \neq \alpha_j} |\alpha_i - \alpha_j|$.
- The Mahler measure of $f(x)$ is

$$M(f) := |b_n| \prod_{1 \leq j \leq n} \max(1, |\alpha_j|).$$

- The (absolute value of the) discriminant of $f(x)$ is

$$|\Delta_f| := |b_n|^{2n-2} \prod_{1 \leq i < j \leq n} |\alpha_i - \alpha_j|^2.$$

Why Mahler Measure?

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Fact

$M(f)$ is approximately the same size as the maximal absolute value of the coefficients of $f(x)$.

Why Mahler Measure?

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Fact

$M(f)$ is approximately the same size as the maximal absolute value of the coefficients of $f(x)$.

Meaning

$M(f)$ translates between roots and coefficients.

Lower Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Goal

For solving Thue equations, we want a lower bound on $\text{sep}(f)$.

Lower Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Goal

For solving Thue equations, we want a lower bound on $\text{sep}(f)$.

Theorem (Mahler, 1964)

For all monic polynomials $f(x) \in \mathbb{C}[x]$ of degree $n \geq 2$,

$$\text{sep}(f) \geq \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Lower Bounds

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Goal

For solving Thue equations, we want a lower bound on $\text{sep}(f)$.

Theorem (Mahler, 1964)

For all monic polynomials $f(x) \in \mathbb{C}[x]$ of degree $n \geq 2$,

$$\text{sep}(f) \geq \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Corollary (Mahler, 1964)

For separable monic $f(x) \in \mathbb{Z}[x]$ of degree $n \geq 2$,

$$\text{sep}(f) \geq \frac{\sqrt{3}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation
Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Theorem (Mahler, 1964)

For all polynomials $f(x) \in \mathbb{C}[x]$ of degree $n \geq 2$,

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Theorem (Mahler, 1964)

For all polynomials $f(x) \in \mathbb{C}[x]$ of degree $n \geq 2$,

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Observation

For a monic separable $f(x)$, $|\Delta_f|$ is bounded below in terms of separation:

$$|\Delta_f| = \prod_{1 \leq i < j \leq n} |\alpha_i - \alpha_j|^2$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Theorem (Mahler, 1964)

For all polynomials $f(x) \in \mathbb{C}[x]$ of degree $n \geq 2$,

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Observation

For a monic separable $f(x)$, $|\Delta_f|$ is bounded below in terms of separation:

$$\begin{aligned} |\Delta_f| &= \prod_{1 \leq i < j \leq n} |\alpha_i - \alpha_j|^2 \\ &\geq \text{sep}(f)^{n(n-1)} \end{aligned}$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

From

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}} \quad \text{and} \quad |\Delta_f| \geq \text{sep}(f)^{n(n-1)},$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

From

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}} \quad \text{and} \quad |\Delta_f| \geq \text{sep}(f)^{n(n-1)},$$

we get

$$\text{sep}(f) > \frac{\sqrt{3} \text{sep}(f)^{n(n-1)/2}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

From

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}} \quad \text{and} \quad |\Delta_f| \geq \text{sep}(f)^{n(n-1)},$$

we get

$$\text{sep}(f) > \frac{\sqrt{3} \text{sep}(f)^{n(n-1)/2}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Rearranging gives:

$$\frac{M(f)^{\frac{2(n-1)}{n^2-n-2}} n^{\frac{n+2}{n^2-n-2}}}{3^{1/(n^2-n-2)}} > \text{sep}(f).$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

From

$$\text{sep}(f) > \frac{\sqrt{3|\Delta_f|}}{n^{(n+2)/2} M(f)^{n-1}} \quad \text{and} \quad |\Delta_f| \geq \text{sep}(f)^{n(n-1)},$$

we get

$$\text{sep}(f) > \frac{\sqrt{3} \text{sep}(f)^{n(n-1)/2}}{n^{(n+2)/2} M(f)^{n-1}}.$$

Rearranging gives:

$$\frac{M(f)^{\frac{2(n-1)}{n^2-n-2}} n^{\frac{n+2}{n^2-n-2}}}{3^{1/(n^2-n-2)}} > \text{sep}(f).$$

If $n \geq 4$ we get the nicer expression

$$\text{sep}(f) < n^{\frac{1}{n-3}} M(f)^{\frac{2}{n-\frac{1}{2}}}.$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

From a Lower Bound to an Upper Bound

Using techniques from Mahler's original paper instead yields

$$\text{sep}(f) \leq n^{1/(n-1)} M(f)^{2/n}.$$

Reversing the Question

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

From a Lower Bound to an Upper Bound

Using techniques from Mahler's original paper instead yields

$$\text{sep}(f) \leq n^{1/(n-1)} M(f)^{2/n}.$$

Question

Is this an optimal upper bound on $\text{sep}(f)$?

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.
- 4 Plot the pair $(M(f), \text{sep}(f))$.

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.
- 4 Plot the pair $(M(f), \text{sep}(f))$.
- 5 Repeat many times.

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.
- 4 Plot the pair $(M(f), \text{sep}(f))$.
- 5 Repeat many times.

The Polynomial Sampling Space

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.
- 4 Plot the pair $(M(f), \text{sep}(f))$.
- 5 Repeat many times.

The Polynomial Sampling Space

Why sample random polynomials in $\mathbb{R}[x]$ instead of $\mathbb{Z}[x]$?

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.
- 4 Plot the pair $(M(f), \text{sep}(f))$.
- 5 Repeat many times.

The Polynomial Sampling Space

Why sample random polynomials in $\mathbb{R}[x]$ instead of $\mathbb{Z}[x]$?

- If we sampled random polynomials in $\mathbb{Z}[x]$ by randomly choosing their coefficients, we would have to factor them to compute the Mahler measure and separation.

Collecting Data

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Procedure

- 1 Pick a random monic polynomial of degree n in $\mathbb{R}[x]$.
- 2 Compute its separation, $\text{sep}(f)$.
- 3 Compute its Mahler measure, $M(f)$.
- 4 Plot the pair $(M(f), \text{sep}(f))$.
- 5 Repeat many times.

The Polynomial Sampling Space

Why sample random polynomials in $\mathbb{R}[x]$ instead of $\mathbb{Z}[x]$?

- If we sampled random polynomials in $\mathbb{Z}[x]$ by randomly choosing their coefficients, we would have to factor them to compute the Mahler measure and separation.
- Instead, to create a “random” polynomial of degree n , we choose its roots from a uniform distribution on an appropriate region of \mathbb{C} .

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Cases

- Quartics provide a good case for data collection because they have three distinct signatures:

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Cases

- Quartics provide a good case for data collection because they have three distinct signatures:
 - Four real roots
 - Signature $(4, 0)$

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Cases

- Quartics provide a good case for data collection because they have three distinct signatures:
 - Four real roots
 - Signature $(4, 0)$
 - Two real roots and one pair of complex conjugate roots
 - Signature $(2, 1)$

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Cases

- Quartics provide a good case for data collection because they have three distinct signatures:
 - Four real roots
 - Signature (4, 0)
 - Two real roots and one pair of complex conjugate roots
 - Signature (2, 1)
 - Two pairs of complex conjugate roots
 - Signature (0, 2)

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Cases

- Quartics provide a good case for data collection because they have three distinct signatures:
 - Four real roots
 - Signature (4, 0)
 - Two real roots and one pair of complex conjugate roots
 - Signature (2, 1)
 - Two pairs of complex conjugate roots
 - Signature (0, 2)
- We can illustrate the difference between these cases as follows.

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Here are the results of selecting 50,000 random polynomials with real coefficients of a specified signature, and plotting their Mahler measure against their separation:

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

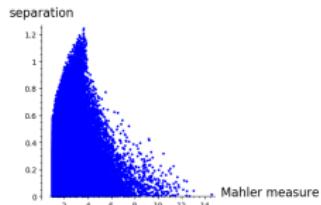
Definitions and
Notation

Data and
Conjectures

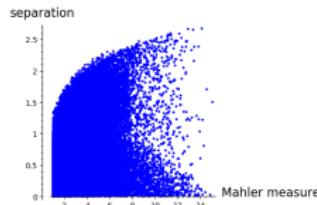
Main Theorem

A Consequence

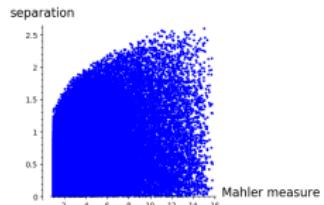
Here are the results of selecting 50,000 random polynomials with real coefficients of a specified signature, and plotting their Mahler measure against their separation:



Signature (4, 0)



Signature (2, 1)



Signature (0, 2)

Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

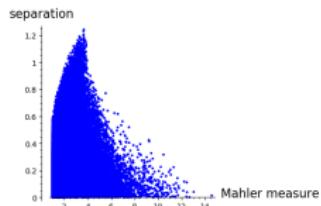
Definitions and
Notation

Data and
Conjectures

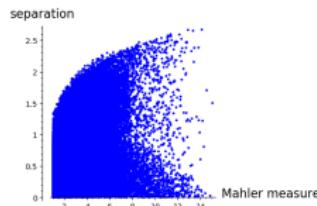
Main Theorem

A Consequence

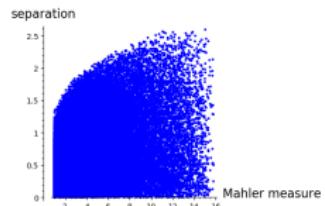
Here are the results of selecting 50,000 random polynomials with real coefficients of a specified signature, and plotting their Mahler measure against their separation:



Signature (4, 0)



Signature (2, 1)



Signature (0, 2)

We're interested in an upper bound of the form $\text{sep}(f) \leq C(n)M(f)^{e(n)}$, so a log-log plot makes more sense.

Log-Log Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Here are the results of selecting 50,000 random polynomials with real coefficients of a specified signature, and plotting their logarithmic Mahler measure against their logarithmic separation:

Log-Log Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

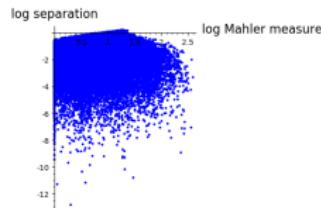
Definitions and
Notation

Data and
Conjectures

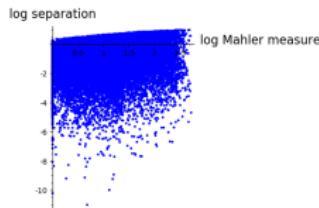
Main Theorem

A Consequence

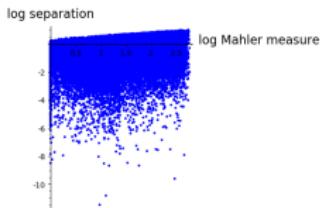
Here are the results of selecting 50,000 random polynomials with real coefficients of a specified signature, and plotting their logarithmic Mahler measure against their logarithmic separation:



Signature (4, 0)



Signature (2, 1)



Signature (0, 2)

Log-Log Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

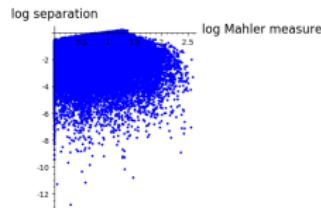
Definitions and
Notation

Data and
Conjectures

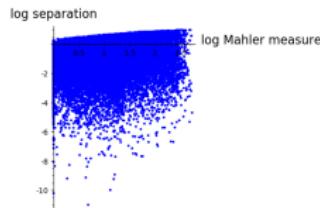
Main Theorem

A Consequence

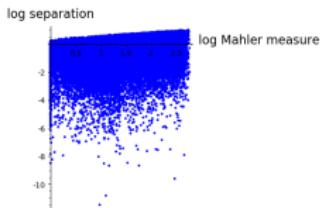
Here are the results of selecting 50,000 random polynomials with real coefficients of a specified signature, and plotting their logarithmic Mahler measure against their logarithmic separation:



Signature (4, 0)



Signature (2, 1)



Signature (0, 2)

The logarithmic separation appears to be bounded above by a linear function of the logarithmic Mahler measure.

Discerning the Upper Bound: Signature (4, 0)

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

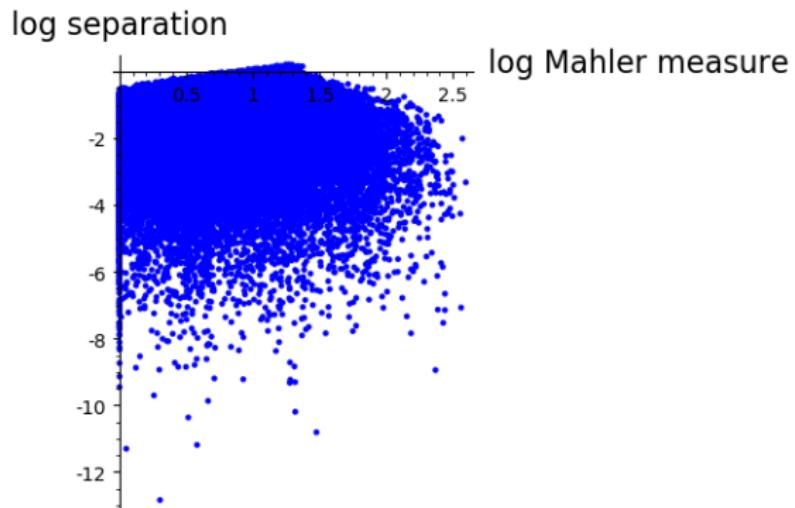
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence



Discerning the Upper Bound: Signature (4, 0)

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

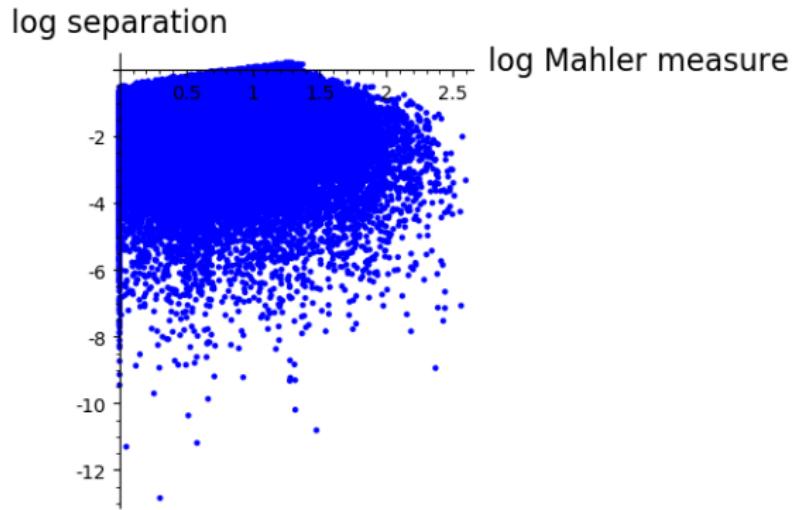
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence



The upper bound here appears to be something like
 $\log \text{sep}(f) \leq \frac{1}{3} \log M(f) - \frac{1}{2}$, i.e.

$$\text{sep}(f) \leq e^{-1/2} M(f)^{1/3}.$$

Discerning the Upper Bound: Signature (2, 1)

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

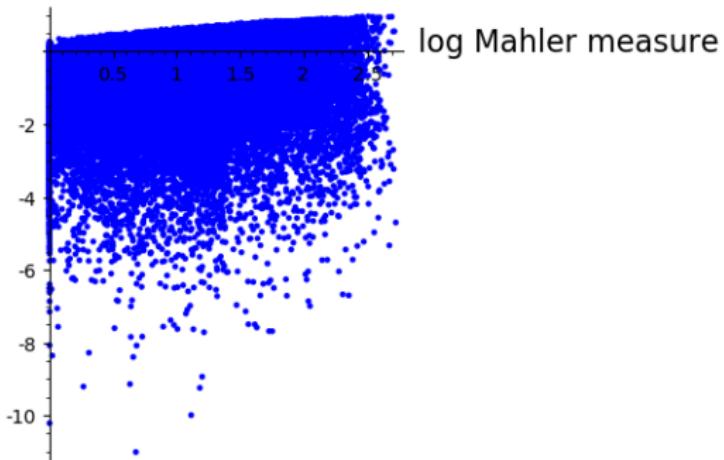
Definitions and
Notation

Data and
Conjectures

Main Theorem

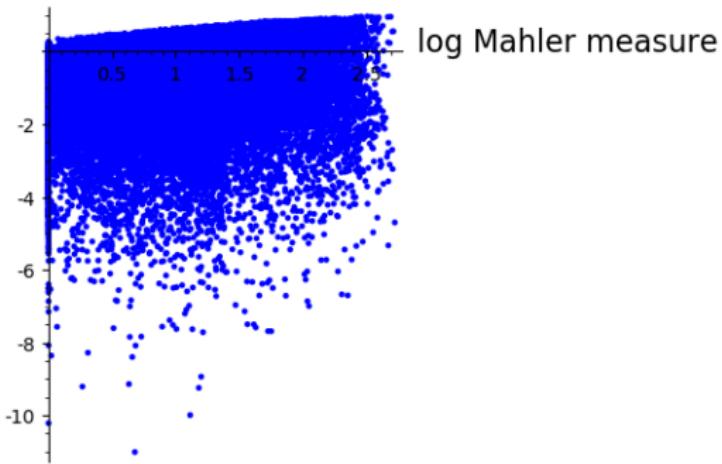
A Consequence

log separation



Discerning the Upper Bound: Signature (2, 1)

log separation



The upper bound in this case appears to be something like $\log \text{sep}(f) \leq \frac{1}{3} \log M(f) + \frac{1}{4}$, i.e.

$$\text{sep}(f) \leq e^{1/4} M(f)^{1/3}.$$

Discerning the Upper Bounds: Signature (0, 2)

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

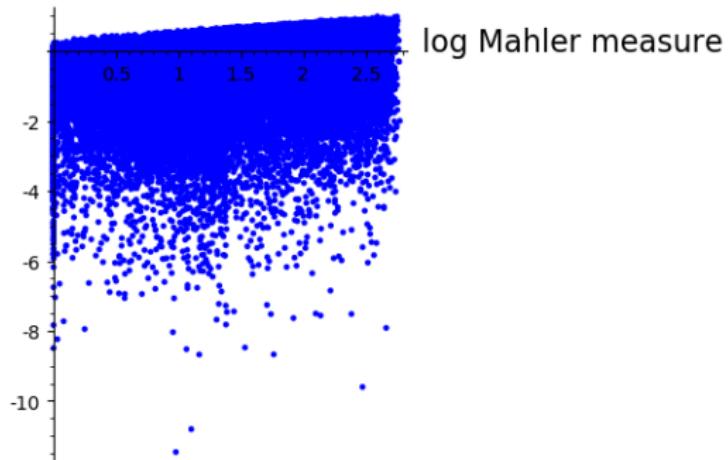
Definitions and
Notation

Data and
Conjectures

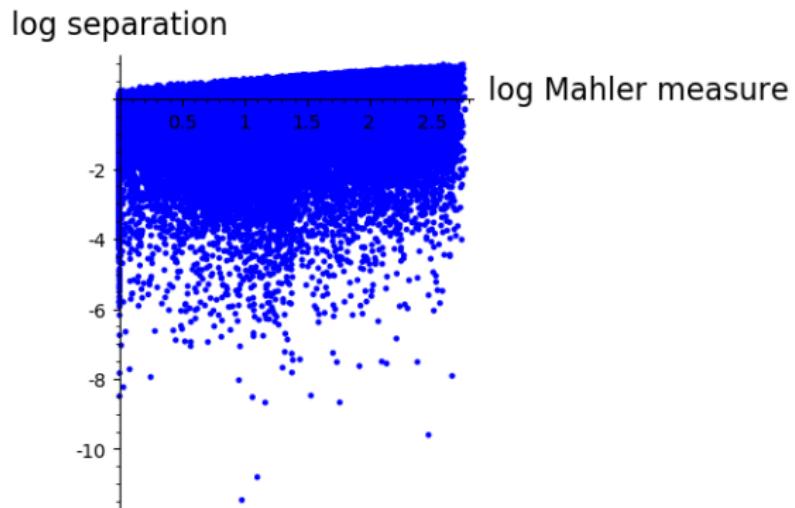
Main Theorem

A Consequence

log separation



Discerning the Upper Bounds: Signature (0, 2)



The upper bound in this case appears to be something like $\log \text{sep}(f) \leq \frac{1}{4} \log M(f) + \frac{1}{4}$, i.e.

$$\text{sep}(f) \leq e^{1/4} M(f)^{1/4}.$$

The Degree 10 Case

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Here is a plot of the logarithmic separations and Mahler measures of 2,000,000 degree 10 monic polynomials with 5 pairs of complex conjugate roots:

The Degree 10 Case

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

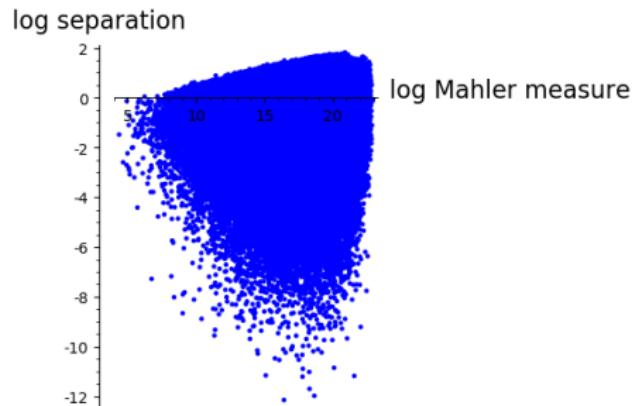
Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Here is a plot of the logarithmic separations and Mahler measures of 2,000,000 degree 10 monic polynomials with 5 pairs of complex conjugate roots:



The Degree 10 Case

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

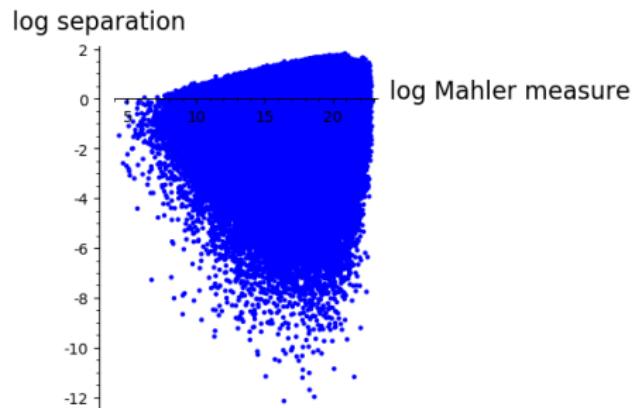
Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Here is a plot of the logarithmic separations and Mahler measures of 2,000,000 degree 10 monic polynomials with 5 pairs of complex conjugate roots:



Here, we get something like $\log \text{sep}(f) \leq \frac{1}{10} \log M(f) - \frac{1}{2}$, i.e.

$$\text{sep}(f) \leq e^{-1/2} M(f)^{1/10}.$$

A Conjecture

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Conjecture

There is an absolute constant $C > 0$ so that for any $f(x) \in \mathbb{R}[x]$ which is separable and monic of degree n

A Conjecture

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Conjecture

There is an absolute constant $C > 0$ so that for any $f(x) \in \mathbb{R}[x]$ which is separable and monic of degree n :

- *if $f(x)$ has any real roots, then*

$$\text{sep}(f) < CM(f)^{1/(n-1)},$$

A Conjecture

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Conjecture

There is an absolute constant $C > 0$ so that for any $f(x) \in \mathbb{R}[x]$ which is separable and monic of degree n :

- *if $f(x)$ has any real roots, then*

$$\text{sep}(f) < CM(f)^{1/(n-1)},$$

- *if $f(x)$ has no real roots, then*

$$\text{sep}(f) < CM(f)^{1/n}.$$

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j .

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j . Then

$$\text{sep}(f)^{n-1} \leq |\alpha_2 - \alpha_1| |\alpha_3 - \alpha_1| \cdots |\alpha_n - \alpha_1|$$

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j . Then

$$\begin{aligned}\text{sep}(f)^{n-1} &\leq |\alpha_2 - \alpha_1| |\alpha_3 - \alpha_1| \cdots |\alpha_n - \alpha_1| \\ &\leq (|\alpha_2| + |\alpha_1|)(|\alpha_3| + |\alpha_1|) \cdots (|\alpha_n| + |\alpha_1|)\end{aligned}$$

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j . Then

$$\begin{aligned}\text{sep}(f)^{n-1} &\leq |\alpha_2 - \alpha_1| |\alpha_3 - \alpha_1| \cdots |\alpha_n - \alpha_1| \\ &\leq (|\alpha_2| + |\alpha_1|)(|\alpha_3| + |\alpha_1|) \cdots (|\alpha_n| + |\alpha_1|) \\ &\leq 2|\alpha_2| \cdot 2|\alpha_3| \cdots 2|\alpha_n|\end{aligned}$$

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j . Then

$$\begin{aligned}\text{sep}(f)^{n-1} &\leq |\alpha_2 - \alpha_1| |\alpha_3 - \alpha_1| \cdots |\alpha_n - \alpha_1| \\ &\leq (|\alpha_2| + |\alpha_1|)(|\alpha_3| + |\alpha_1|) \cdots (|\alpha_n| + |\alpha_1|) \\ &\leq 2|\alpha_2| \cdot 2|\alpha_3| \cdots 2|\alpha_n| \\ &\leq 2^{n-1} M(f).\end{aligned}$$

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j . Then

$$\begin{aligned}\text{sep}(f)^{n-1} &\leq |\alpha_2 - \alpha_1| |\alpha_3 - \alpha_1| \cdots |\alpha_n - \alpha_1| \\ &\leq (|\alpha_2| + |\alpha_1|)(|\alpha_3| + |\alpha_1|) \cdots (|\alpha_n| + |\alpha_1|) \\ &\leq 2|\alpha_2| \cdot 2|\alpha_3| \cdots 2|\alpha_n| \\ &\leq 2^{n-1} M(f).\end{aligned}$$

Hence, $\text{sep}(f) \leq 2M(f)^{1/(n-1)}$, confirming the conjecture.

A Proof

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Proof of the Conjecture

Write $f(x) = \prod_{i=1}^n (x - \alpha_i)$ so that $|\alpha_1| \leq |\alpha_j|$ for all j . Then

$$\begin{aligned}\text{sep}(f)^{n-1} &\leq |\alpha_2 - \alpha_1| |\alpha_3 - \alpha_1| \cdots |\alpha_n - \alpha_1| \\ &\leq (|\alpha_2| + |\alpha_1|)(|\alpha_3| + |\alpha_1|) \cdots (|\alpha_n| + |\alpha_1|) \\ &\leq 2|\alpha_2| \cdot 2|\alpha_3| \cdots 2|\alpha_n| \\ &\leq 2^{n-1} M(f).\end{aligned}$$

Hence, $\text{sep}(f) \leq 2M(f)^{1/(n-1)}$, confirming the conjecture.

Question

Is this an optimal upper bound on $\text{sep}(f)$?

Main Theorem

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

Theorem (K., Yip, 2025)

Let $f(x) \in \mathbb{C}[x]$ be monic and separable of degree $n \geq 2$. Then

$$\text{sep}(f) \leq \min \left\{ 2, \frac{34}{\sqrt{n}} \right\} M(f)^{1/(n-1)}.$$

A Consequence

Main Theorem

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

Theorem (K., Yip, 2025)

Let $f(x) \in \mathbb{C}[x]$ be monic and separable of degree $n \geq 2$. Then

$$\text{sep}(f) \leq \min \left\{ 2, \frac{34}{\sqrt{n}} \right\} M(f)^{1/(n-1)}.$$

If, in addition, $f(x) \in \mathbb{R}[x]$ and $f(x)$ has no real roots, then

$$\text{sep}(f) \leq \min \left\{ 2, \frac{34}{\sqrt{n}} \right\} M(f)^{1/n}.$$

Main Theorem

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Theorem (K., Yip, 2025)

Let $f(x) \in \mathbb{C}[x]$ be monic and separable of degree $n \geq 2$. Then

$$\text{sep}(f) \leq \min \left\{ 2, \frac{34}{\sqrt{n}} \right\} M(f)^{1/(n-1)}.$$

If, in addition, $f(x) \in \mathbb{R}[x]$ and $f(x)$ has no real roots, then

$$\text{sep}(f) \leq \min \left\{ 2, \frac{34}{\sqrt{n}} \right\} M(f)^{1/n}.$$

Note

This result is sharp except possibly for the constant 34. The best possible constant is at least $5/8$.

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$, and observe that

$$\bigcup_{|\alpha_i| \leq R} B_r(\alpha_i) \subsetneq B_{R+r}(0).$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$, and observe that

$$\bigcup_{|\alpha_i| \leq R} B_r(\alpha_i) \subsetneq B_{R+r}(0).$$

Hence,

$$N(R) \cdot \pi r^2 = \sum_{|\alpha_i| \leq R} \text{vol}(B_r(\alpha_i))$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$, and observe that

$$\bigcup_{|\alpha_i| \leq R} B_r(\alpha_i) \subsetneq B_{R+r}(0).$$

Hence,

$$N(R) \cdot \pi r^2 = \sum_{|\alpha_i| \leq R} \text{vol}(B_r(\alpha_i)) < \text{vol}(B_{R+r}(0))$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$, and observe that

$$\bigcup_{|\alpha_i| \leq R} B_r(\alpha_i) \subsetneq B_{R+r}(0).$$

Hence,

$$N(R) \cdot \pi r^2 = \sum_{|\alpha_i| \leq R} \text{vol}(B_r(\alpha_i)) < \text{vol}(B_{R+r}(0)) = \pi(R+r)^2,$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$, and observe that

$$\bigcup_{|\alpha_i| \leq R} B_r(\alpha_i) \subsetneq B_{R+r}(0).$$

Hence,

$$N(R) \cdot \pi r^2 = \sum_{|\alpha_i| \leq R} \text{vol}(B_r(\alpha_i)) < \text{vol}(B_{R+r}(0)) = \pi(R+r)^2,$$

implying

$$N(R) < \left(\frac{R}{r} + 1 \right)^2.$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$. Then

$$N(R) < \left(\frac{R}{r} + 1\right)^2.$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$. Then

$$N(R) < \left(\frac{R}{r} + 1\right)^2.$$

Define $R_j = r(\sqrt{n/2^j} - 1)$. By construction, there are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$. Then

$$N(R) < \left(\frac{R}{r} + 1\right)^2.$$

Define $R_j = r(\sqrt{n/2^j} - 1)$. By construction, there are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

For any $R > 0$, let

$$N(R) := \#\{i : |\alpha_i| \leq R\}.$$

Let $r = \frac{\text{sep}(f)}{2}$. Then

$$N(R) < \left(\frac{R}{r} + 1\right)^2.$$

Define $R_j = r(\sqrt{n/2^j} - 1)$. By construction, there are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,
- at least $(2^j - 1)n/2^j$ roots with $|\alpha_i| \geq R_j$.

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let $r = \frac{\text{sep}(f)}{2}$. Define $R_j = r(\sqrt{n/2^j} - 1)$. There are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,
- at least $(2^j - 1)n/2^j$ roots with $|\alpha_i| \geq R_j$.

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let $r = \frac{\text{sep}(f)}{2}$. Define $R_j = r(\sqrt{n/2^j} - 1)$. There are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,
- at least $(2^j - 1)n/2^j$ roots with $|\alpha_i| \geq R_j$.

Then

$$M(f) \geq \prod_i |\alpha_i|$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let $r = \frac{\text{sep}(f)}{2}$. Define $R_j = r(\sqrt{n/2^j} - 1)$. There are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,
- at least $(2^j - 1)n/2^j$ roots with $|\alpha_i| \geq R_j$.

Then

$$\begin{aligned} M(f) &\geq \prod_i |\alpha_i| \\ &\geq R_1^{n/2} R_2^{n/4} R_3^{n/8} \cdots R_L^{n/2^L} \end{aligned}$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let $r = \frac{\text{sep}(f)}{2}$. Define $R_j = r(\sqrt{n/2^j} - 1)$. There are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,
- at least $(2^j - 1)n/2^j$ roots with $|\alpha_i| \geq R_j$.

Then

$$\begin{aligned} M(f) &\geq \prod_i |\alpha_i| \\ &\geq R_1^{n/2} R_2^{n/4} R_3^{n/8} \cdots R_L^{n/2^L} \\ &\geq \frac{(r\sqrt{n})^{n-1}}{4n^2 \cdot 16^n}. \end{aligned}$$

Proof Idea

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations
Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Let $r = \frac{\text{sep}(f)}{2}$. Define $R_j = r(\sqrt{n/2^j} - 1)$. There are

- at least $n/2$ roots with $|\alpha_i| \geq R_1$,
- at least $3n/4$ roots with $|\alpha_i| \geq R_2$,
- at least $(2^j - 1)n/2^j$ roots with $|\alpha_i| \geq R_j$.

Then

$$\begin{aligned} M(f) &\geq \prod_i |\alpha_i| \\ &\geq R_1^{n/2} R_2^{n/4} R_3^{n/8} \cdots R_L^{n/2^L} \\ &\geq \frac{(r\sqrt{n})^{n-1}}{4n^2 \cdot 16^n}. \end{aligned}$$

Rearranging yields the theorem.

Big Picture

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Question

What do we gain by knowing $\text{sep}(f) \leq \frac{34M(f)^{1/(n-1)}}{\sqrt{n}}$?

Big Picture

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation
Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Question

What do we gain by knowing $\text{sep}(f) \leq \frac{34M(f)^{1/(n-1)}}{\sqrt{n}}$?

Conjecture (Lehmer)

For every monic, noncyclotomic, irreducible $f(x) \in \mathbb{Z}[x]$,
 $M(f) \geq 1.1$.

Big Picture

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Question

What do we gain by knowing $\text{sep}(f) \leq \frac{34M(f)^{1/(n-1)}}{\sqrt{n}}$?

Conjecture (Lehmer)

For every monic, noncyclotomic, irreducible $f(x) \in \mathbb{Z}[x]$,
 $M(f) \geq 1.1$.

Consequence

Lehmer's conjecture holds for $f(x)$ with

$$\text{sep}(f) \geq \frac{34 \cdot (1.1)^{1/(n-1)}}{\sqrt{n}}.$$

The Other Side

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Another Consequence

From Mahler's earlier $\text{sep}(f) \geq \frac{\sqrt{3}}{n^{(n+2)/2} M(f)^{n-1}}$, it follows that Lehmer's conjecture holds when

$$\text{sep}(f) \leq \frac{\sqrt{3}}{n^{(n+2)/2} \cdot 1.1^{n-1}}.$$

The Other Side

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Another Consequence

From Mahler's earlier $\text{sep}(f) \geq \frac{\sqrt{3}}{n^{(n+2)/2} M(f)^{n-1}}$, it follows that Lehmer's conjecture holds when

$$\text{sep}(f) \leq \frac{\sqrt{3}}{n^{(n+2)/2} \cdot 1.1^{n-1}}.$$

A Reduction

To prove Lehmer's conjecture, it suffices to assume

$$\frac{\sqrt{3}}{n^{(n+2)/2} \cdot 1.1^{n-1}} < \text{sep}(f) < \frac{34 \cdot (1.1)^{1/(n-1)}}{\sqrt{n}}.$$

Thank you!

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

Questions?