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A Thue Equation

Problem

Find all integer solutions to |X6 + 3X5Y − Y 6| = 1.

Claim

There are only finitely many such solutions.

Reductions

1 If (x, y) is a solution, so is (−x,−y), so assume y ⩾ 0.

2 Only two solutions (x, y) have y = 0—namely, (±1, 0)—so
assume y ⩾ 1.

3 Only two solutions (x, y) have y = 1—namely, (0, 1) and
(−3, 1)—so assume y ⩾ 2.
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A Thue Equation: Initial Approach

Problem

Find all integer solutions (x, y) to |X6+3X5Y −Y 6| = 1 with y ⩾ 2.

First, divide by y6: ∣∣∣∣∣
(
x

y

)6

+ 3

(
x

y

)5

− 1

∣∣∣∣∣ = 1

y6
.

Next, factor the left-hand side:

6∏
i=1

∣∣∣∣xy − αi

∣∣∣∣ = 1

y6

where α1, . . . , α6 are the roots of X6 + 3X5 − 1. Let j be the index
which minimizes |x/y − αj |. Then,∣∣∣∣xy − αj

∣∣∣∣ ⩽ 6∏
i=1

∣∣∣∣xy − αi

∣∣∣∣1/6

=
1

y
.
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A Thue Equation: An Obstacle

Problem

Find all integer solutions (x, y) to |X6+3X5Y −Y 6| = 1 with y ⩾ 2.

Helpful fact?

If (x, y) is a solution with y ⩾ 2 and α1, . . . , α6 are the roots of
f(X) = X6 + 3X5 − 1, then∣∣∣∣xy − αj

∣∣∣∣ ⩽ 1

y
⩽

1

2
.

Obstacle (Dirichlet)

For any irrational α ∈ R, there are infinitely many relatively prime
p, q ∈ Z with ∣∣∣∣pq − α

∣∣∣∣ ⩽ 1

q2
.



Upper Bounds on
Polynomial Root

Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

A Thue Equation: An Obstacle

Problem

Find all integer solutions (x, y) to |X6+3X5Y −Y 6| = 1 with y ⩾ 2.

Helpful fact?

If (x, y) is a solution with y ⩾ 2 and α1, . . . , α6 are the roots of
f(X) = X6 + 3X5 − 1, then∣∣∣∣xy − αj

∣∣∣∣ ⩽ 1

y
⩽

1

2
.

Obstacle (Dirichlet)

For any irrational α ∈ R, there are infinitely many relatively prime
p, q ∈ Z with ∣∣∣∣pq − α

∣∣∣∣ ⩽ 1

q2
.



Upper Bounds on
Polynomial Root

Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

A Thue Equation: An Obstacle

Problem

Find all integer solutions (x, y) to |X6+3X5Y −Y 6| = 1 with y ⩾ 2.

Helpful fact?

If (x, y) is a solution with y ⩾ 2 and α1, . . . , α6 are the roots of
f(X) = X6 + 3X5 − 1, then∣∣∣∣xy − αj

∣∣∣∣ ⩽ 1

y
⩽

1

2
.

Obstacle (Dirichlet)

For any irrational α ∈ R, there are infinitely many relatively prime
p, q ∈ Z with ∣∣∣∣pq − α

∣∣∣∣ ⩽ 1

q2
.



Upper Bounds on
Polynomial Root

Separation

Greg Knapp

Introduction:
Thue Equations

Separation

Definitions and
Notation

Data and
Conjectures

Main Theorem

A Consequence

A Thue Equation: Searching for Improvements

An Inefficiency

Note that ∣∣∣∣xy − αj

∣∣∣∣ ⩽ 6∏
i=1

∣∣∣∣xy − αi

∣∣∣∣1/6
is “good” if and only if all |x/y−αi| are approximately the same size.

Roots

Complex roots of X6 + 3X5 − 1:

α1 ≈ −3.004

α2 ≈ 0.767

α3, α4 ≈ −0.66± 0.52i

α5, α6 ≈ 0.28± 0.74i
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A Thue Equation: Improved Bounds

Let (x, y) be a solution to |X6 + 3X5Y − Y 6| = 1 with y ⩾ 2. Then

1

y6
=

6∏
i=1

∣∣∣∣xy − αi

∣∣∣∣

=

∣∣∣∣xy − αj

∣∣∣∣∏
i̸=j

∣∣∣∣xy − αj + αj − αi

∣∣∣∣
⩾

∣∣∣∣xy − αj

∣∣∣∣∏
i̸=j

∣∣∣∣|αj − αi| −
∣∣∣∣xy − αj

∣∣∣∣∣∣∣∣
⩾

∣∣∣∣xy − αj

∣∣∣∣∏
i̸=j

0.43|αj − αi|

⩾
1

120

∣∣∣∣xy − αj

∣∣∣∣ .
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A New Approximation Result

Before and After

Before:

∣∣∣∣xy − αj

∣∣∣∣ ⩽ 1

y

After:

∣∣∣∣xy − αj

∣∣∣∣ ⩽ 120

y6

Conclusion

Using Thue’s improvement to Liouville’s Theorem, there are only
finitely many such x

y .

Key Ingredient

We used a lower bound on |αj − αi|.
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Relevant Definitions

Let

f(x) =

n∑
i=0

bix
i = bn

n∏
j=1

(x− αj) ∈ C[x].

Definitions

The separation of f(x) is sep(f) := minαi ̸=αj
|αi − αj |.

The Mahler measure of f(x) is

M(f) := |bn|
∏

1⩽j⩽n

max(1, |αj |).

The (absolute value of the) discriminant of f(x) is

|∆f | := |bn|2n−2
∏

1⩽i<j⩽n

|αi − αj |2.
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(x− αj) ∈ C[x].

Definitions

The separation of f(x) is sep(f) := minαi ̸=αj
|αi − αj |.

The Mahler measure of f(x) is

M(f) := |bn|
∏

1⩽j⩽n

max(1, |αj |).

The (absolute value of the) discriminant of f(x) is

|∆f | := |bn|2n−2
∏

1⩽i<j⩽n

|αi − αj |2.
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Why Mahler Measure?

Fact

M(f) is approximately the same size as the maximal absolute value
of the coefficients of f(x).

Meaning

M(f) translates between roots and coefficients.
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Lower Bounds

Goal

For solving Thue equations, we want a lower bound on sep(f).

Theorem (Mahler, 1964)

For all monic polynomials f(x) ∈ C[x] of degree n ⩾ 2,

sep(f) ⩾

√
3|∆f |

n(n+2)/2M(f)n−1
.

Corollary (Mahler, 1964)

For separable monic f(x) ∈ Z[x] of degree n ⩾ 2,

sep(f) ⩾

√
3

n(n+2)/2M(f)n−1
.
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Reversing the Question

Theorem (Mahler, 1964)

For all polynomials f(x) ∈ C[x] of degree n ⩾ 2,

sep(f) >

√
3|∆f |

n(n+2)/2M(f)n−1
.

Observation

For a monic separable f(x), |∆f | is bounded below in terms of
separation:

|∆f | =
∏

1⩽i<j⩽n

|αi − αj |2

⩾ sep(f)n(n−1)
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Reversing the Question

From

sep(f) >

√
3|∆f |

n(n+2)/2M(f)n−1
and |∆f | ⩾ sep(f)n(n−1),

we get

sep(f) >

√
3 sep(f)n(n−1)/2

n(n+2)/2M(f)n−1
.

Rearranging gives:

M(f)
2(n−1)

n2−n−2n
n+2

n2−n−2

31/(n2−n−2)
> sep(f).

If n ⩾ 4 we get the nicer expression

sep(f) < n
1

n−3M(f)
2

n− 1
2 .
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Reversing the Question

From a Lower Bound to an Upper Bound

Using techniques from Mahler’s original paper instead yields

sep(f) ⩽ n1/(n−1)M(f)2/n.

Question

Is this an optimal upper bound on sep(f)?
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Collecting Data

Procedure

1 Pick a random monic polynomial of degree n in R[x].

2 Compute its separation, sep(f).

3 Compute its Mahler measure, M(f).

4 Plot the pair (M(f), sep(f)).

5 Repeat many times.

The Polynomial Sampling Space

Why sample random polynomials in R[x] instead of Z[x]?
If we sampled random polynomials in Z[x] by randomly choosing
their coefficients, we would have to factor them to compute the
Mahler measure and separation.

Instead, to create a “random” polynomial of degree n, we
choose its roots from a uniform distribution on an appropriate
region of C.
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Data for Quartics

Cases

Quartics provide a good case for data collection because they
have three distinct signatures:

Four real roots

Signature (4, 0)

Two real roots and one pair of complex conjugate roots

Signature (2, 1)

Two pairs of complex conjugate roots

Signature (0, 2)

We can illustrate the difference between these cases as follows.
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Data for Quartics

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their Mahler
measure against their separation:

Signature (4, 0) Signature (2, 1) Signature (0, 2)

We’re interested in an upper bound of the form
sep(f) ⩽ C(n)M(f)e(n), so a log-log plot makes more sense.
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Here are the results of selecting 50,000 random polynomials with real
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Log-Log Data for Quartics

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their logarithmic
Mahler measure against their logarithmic separation:

Signature (4, 0) Signature (2, 1) Signature (0, 2)

The logarithmic separation appears to be bounded above by a linear
function of the logarithmic Mahler measure.
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Log-Log Data for Quartics

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their logarithmic
Mahler measure against their logarithmic separation:
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The logarithmic separation appears to be bounded above by a linear
function of the logarithmic Mahler measure.
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Log-Log Data for Quartics

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their logarithmic
Mahler measure against their logarithmic separation:
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Discerning the Upper Bound: Signature (4, 0)

The upper bound here appears to be something like
log sep(f) ⩽ 1

3 logM(f)− 1
2 , i.e.

sep(f) ⩽ e−1/2M(f)1/3.
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Discerning the Upper Bound: Signature (2, 1)

The upper bound in this case appears to be something like
log sep(f) ⩽ 1

3 logM(f) + 1
4 , i.e.

sep(f) ⩽ e1/4M(f)1/3.
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Discerning the Upper Bound: Signature (2, 1)

The upper bound in this case appears to be something like
log sep(f) ⩽ 1

3 logM(f) + 1
4 , i.e.

sep(f) ⩽ e1/4M(f)1/3.
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Discerning the Upper Bounds: Signature (0, 2)

The upper bound in this case appears to be something like
log sep(f) ⩽ 1

4 logM(f) + 1
4 , i.e.

sep(f) ⩽ e1/4M(f)1/4.
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Discerning the Upper Bounds: Signature (0, 2)

The upper bound in this case appears to be something like
log sep(f) ⩽ 1

4 logM(f) + 1
4 , i.e.

sep(f) ⩽ e1/4M(f)1/4.
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The Degree 10 Case

Here is a plot of the logarithmic separations and Mahler measures of
2,000,000 degree 10 monic polynomials with 5 pairs of complex
conjugate roots:

Here, we get something like log sep(f) ⩽ 1
10 logM(f)− 1

2 , i.e.

sep(f) ⩽ e−1/2M(f)1/10.
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Conjecture

There is an absolute constant C > 0 so that for any f(x) ∈ R[x]
which is separable and monic of degree n

:

if f(x) has any real roots, then

sep(f) < CM(f)1/(n−1),

if f(x) has no real roots, then

sep(f) < CM(f)1/n.
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A Proof

Proof of the Conjecture

Write f(x) =
∏n

i=1(x− αi) so that |α1| ⩽ |αj | for all j.

Then

sep(f)n−1 ⩽ |α2 − α1||α3 − α1| · · · |αn − α1|

⩽ (|α2|+ |α1|)(|α3|+ |α1|) · · · (|αn|+ |α1|)
⩽ 2|α2| · 2|α3| · · · 2|αn|
⩽ 2n−1M(f).

Hence, sep(f) ⩽ 2M(f)1/(n−1), confirming the conjecture.

Question

Is this an optimal upper bound on sep(f)?
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Theorem (K., Yip, 2025)

Let f(x) ∈ C[x] be monic and separable of degree n ⩾ 2. Then

sep(f) ⩽ min

{
2,

34√
n

}
M(f)1/(n−1).

If, in addition, f(x) ∈ R[x] and f(x) has no real roots, then

sep(f) ⩽ min

{
2,

34√
n

}
M(f)1/n.

Note

This result is sharp except possibly for the constant 34. The best
possible constant is at least 5/8.
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Proof Idea

For any R > 0, let

N(R) := #{i : |αi| ⩽ R}.

Let r = sep(f)
2 , and observe that⋃

|αi|⩽R

Br(αi) ⊊ BR+r(0).

Hence,

N(R) · πr2 =
∑

|αi|⩽R

vol(Br(αi))

< vol(BR+r(0)) = π(R+ r)2,

implying

N(R) <

(
R

r
+ 1

)2

.
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Proof Idea

For any R > 0, let

N(R) := #{i : |αi| ⩽ R}.

Let r = sep(f)
2 . Then

N(R) <

(
R

r
+ 1

)2

.

Define Rj = r(
√
n/2j − 1). By construction, there are

at least n/2 roots with |αi| ⩾ R1,

at least 3n/4 roots with |αi| ⩾ R2,

at least (2j − 1)n/2j roots with |αi| ⩾ Rj .
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Let r = sep(f)
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√
n/2j − 1). There are

at least n/2 roots with |αi| ⩾ R1,

at least 3n/4 roots with |αi| ⩾ R2,

at least (2j − 1)n/2j roots with |αi| ⩾ Rj .

Then

M(f) ⩾
∏
i

|αi|

⩾ R
n/2
1 R

n/4
2 R

n/8
3 · · ·Rn/2L

L

⩾
(r
√
n)n−1

4n2 · 16n
.

Rearranging yields the theorem.
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Big Picture

Question

What do we gain by knowing sep(f) ⩽ 34M(f)1/(n−1)

√
n

?

Conjecture (Lehmer)

For every monic, noncyclotomic, irreducible f(x) ∈ Z[x],
M(f) ⩾ 1.1.

Consequence

Lehmer’s conjecture holds for f(x) with

sep(f) ⩾
34 · (1.1)1/(n−1)

√
n

.
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The Other Side

Another Consequence

From Mahler’s earlier sep(f) ⩾
√
3

n(n+2)/2M(f)n−1 , it follows that

Lehmer’s conjecture holds when

sep(f) ⩽

√
3

n(n+2)/2 · 1.1n−1
.

A Reduction

To prove Lehmer’s conjecture, it suffices to assume

√
3

n(n+2)/2 · 1.1n−1
< sep(f) <

34 · (1.1)1/(n−1)

√
n

.
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Thank you!

Questions?
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