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If (z,y) is a solution with y > 2 and a4, ..., as are the roots of
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Obstacle (Dirichlet)

For any irrational « € R, there are infinitely many relatively prime
p,q € Z with
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Using Thue's improvement to Liouville’'s Theorem, there are only
finitely many such ﬁ

Key Ingredient

We used a lower bound on |a; — ay].
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flx) =Y bz’ =b,

=0 g

(x — aj) € Clz].

m The separation of f(x) is sep(f) := ming, £a, | — ;.

m The Mahler measure of f(z) is

M(f) = bn| [ max(1,|ey)).

1<isn

m The (absolute value of the) discriminant of f(z) is

Apl =107 I e — eyl

1<i<j<n
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of the coefficients of f(z).

M (f) translates between roots and coefficients.
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For solving Thue equations, we want a lower bound on sep(f).

Theorem (Mahler, 1964)

For all monic polynomials f(x) € C[xz] of degree n > 2,

sep(f) > ——Y 31241

= n(n+2)/2M(f)n—1'

Corollary (Mahler, 1964)

For separable monic f(x) € Z[x] of degree n > 2,

V3

sep(f) Z n(n+2)/2M(f)n—1'
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Sep(f) > n("+2)/2M(f)"_1 and |Af| 2 Sep(f) )

we get
VB sep(f)" "=/
n(n+2)/2M(f)n—l :

sep(f) >

Rearranging gives:

2(n—1) n+2
M(f) n2—n—2 nnz—an

31/(n2—n—2) > Sep(f).

If n > 4 we get the nicer expression

2

sep(f) <nmI M(f)" ¥,
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Separation From a Lower Bound to an Upper Bound

e Using techniques from Mabhler's original paper instead yields

sep(f) < n/(DM(f)Hm.

Is this an optimal upper bound on sep(f)?
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Collecting Data

P o
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Greg Knapp Pick a random monic polynomial of degree n in R[z].

Compute its separation, sep(f).

Compute its Mahler measure, M(f).

. Plot the pair (M(f),sep(f)).

Conjectures Repeat many times.

The Polynomial Sampling Space

Why sample random polynomials in R[z] instead of Z[z]?

m If we sampled random polynomials in Z[z] by randomly choosing
their coefficients, we would have to factor them to compute the
Mahler measure and separation.

m Instead, to create a “random” polynomial of degree n, we
choose its roots from a uniform distribution on an appropriate
region of C.
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Cases

m Quartics provide a good case for data collection because they
have three distinct signatures:
Comeatares m Four real roots
m Signature (4,0)
m Two real roots and one pair of complex conjugate roots
m Signature (2,1)
m Two pairs of complex conjugate roots
m Signature (0,2)

m We can illustrate the difference between these cases as follows.
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Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their Mahler
measure against their separation:

separation separation separation

Data and

Conjectures )

. Mahler measure Mahler measure

Mahler measure

Signature (4,0) Signature (2,1) Signature (0,2)

We're interested in an upper bound of the form
sep(f) < C(n)M(f)™), so a log-log plot makes more sense.



Log-Log Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knap

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their logarithmic
Mahler measure against their logarithmic separation:

Data and
Conjectures



Log-Log Data for Quartics

Upper Bounds on
Polynomial Root
Separation

; Knapp

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their logarithmic
Mahler measure against their logarithmic separation:

log separation log separation log separation
... log Mahler measure

: log Mahler measure log Mahler measure

Data and
Conjectures

Signature (4,0) Signature (2,1) Signature (0, 2)



Log-Log Data for Quartics

Upper Bounds on
Polynomial Root
Separation

Greg Knapp

Here are the results of selecting 50,000 random polynomials with real
coefficients of a specified signature, and plotting their logarithmic
Mahler measure against their logarithmic separation:

log separation log separation log separation
... log Mahler measure

: log Mahler measure log Mahler measure

Data and
Conjectures

Signature (4,0) Signature (2,1) Signature (0, 2)

The logarithmic separation appears to be bounded above by a linear
function of the logarithmic Mahler measure.
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The upper bound here appears to be something like
logsep(f) < 3log M(f) — 3. i.e.

sep(f) < e V2M(f)13
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%: log Mahler measure

The upper bound in this case appears to be something like
logsep(f) < 3log M(f)+ %, ie.

sep(f) < eVAM ()3,
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log Mahler measure

The upper bound in this case appears to be something like
logsep(f) < Llog M(f)+ 1, ie.

sep(f) < eVAM(f)M*.
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log separation
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log Mahler measure

Data and
Conjectures 21
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o Here is a plot of the logarithmic separations and Mahler measures of

Polynomial Root

Separation 2,000,000 degree 10 monic polynomials with 5 pairs of complex

Greg Knapp

conjugate roots:

log separation
2

log Mahler measure

Here, we get something like logsep(f) < 15log M(f) — 3, i.e.

sep(f) < e V2M(f)/0.
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There is an absolute constant C' > 0 so that for any f(x) € R|x]
which is separable and monic of degree n:

m if f(z) has any real roots, then

sep(f) < CM(f)Y/*=Y,

m if f(x) has no real roots, then

sep(f) < CM(f)"™.
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B \Write f(2) = [, (z — o) so that |as| < |a;| for all j. Then

sep(f)" ! < |a2 — aallag — aa| -+ | — v
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A Proof

Upper Bounds on

Polynomial Root .
Separation Proof of the Conjecture

Write f(z) =[], (z — a;) so that |aq| < |ay| for all j. Then

sep(f)" ! < Jag — aallas — |-+ - | — v
< (Jez| + [aa|)(las| + |eal]) - - (Jew| + |eal)
< 2|az| - 2]as| - - - 2|an|
< 2" IM(f).

Hence, sep(f) < 2M(f)*/(»=1) confirming the conjecture.

Question

Is this an optimal upper bound on sep(f)?
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Main Theorem

Upper Bounds on
Polynomial Root

Separation Theorem (K., Yip, 2025)
Let f(z) e C

[x] be monic and separable of degree n > 2. Then

sep(f) < min {2, 52 Lar g/,

If, in addition, f(z) € Rlz] and f(x) has no real roots, then

sep() < min {2, S 4 ar(yiin

Note

This result is sharp except possibly for the constant 34. The best
possible constant is at least 5/8.
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N(R) = #{i : |os| < R}.

Let r = %(f), and observe that

U By (i) € Br4r(0).
lovi| SR

N(R)-7mr? = Z vol(B,(a)) < vol(Brr(0)) = m(R+1)?,
lai|<R

implying
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N(R) = #{i : |os| < R}.

Letr:%. Then
R 2
N(R) < <T+1> :

Define R; = r(+/n/27 — 1). By construction, there are
m at least n/2 roots with |a;| > Ry,
m at least 3n/4 roots with || > Ra,
m at least (27 — 1)n/27 roots with |o;| > R;.
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R Let r = 0lf)  Define R; = r(1/n/27 — 1). There are
e m at least n/2 roots with |a;| > Ry,

m at least 3n/4 roots with |a;| > Ra,

m at least (27 — 1)n/27 roots with |a;| > R;.

Then
M(f) > H|0%\

> RYPRYARYS . R
(ry/y

P AL A
4n? - 16™

Rearranging yields the theorem.
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Separation Question

34M ()Y
!

What do we gain by knowing sep(f) <

Conjecture (Lehmer)

For every monic, noncyclotomic, irreducible f(x) € Z[z],
M(f) > 1.1.

A Consequence

Consequence

Lehmer's conjecture holds for f(x) with

34-(1.1)Y/ (-1
vn '

sep(f) >
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The Other Side

Upper Bounds on

Polynomial Root
Separation Another Consequence

From Mahler's earlier sep(f) > sz—\/j\i(ﬁm it follows that
Lehmer's conjecture holds when

V3

sep(f) S~ 1t

A Consequence

To prove Lehmer's conjecture, it suffices to assume

V3 < sep(f) < 34 (1.1)Y/ (=D
nt2)/2 .1 n—-1 5P NG :



Thank you!
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Greg Knap

Questions?

A Consequence
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